

Getting Started with

Deep Learning for

Natural Language

Processing

Learn How to Build NLP

Applications with Deep Learning

Sunil Patel

www.bpbonline.com

FIRST EDITION 2021

Copyright © BPB Publications, India

ISBN: 978-93-89898-11-8

All Rights Reserved. No part of this publication may be

reproduced, distributed or transmitted in any form or by any

means or stored in a database or retrieval system, without the

prior written permission of the publisher with the exception to the

program listings which may be entered, stored and executed in a

computer system, but they can not be reproduced by the means

of publication, photocopy, recording, or by any electronic and

mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the

best of author’s and publisher’s knowledge. The author has made

every effort to ensure the accuracy of these publications, but

publisher cannot be held responsible for any loss or damage

arising from any information in this book.

All trademarks referred to in the book are acknowledged as

properties of their respective owners but BPB Publications cannot

guarantee the accuracy of this information.

Distributors:

BPB PUBLICATIONS

20, Ansari Road, Darya Ganj

New Delhi-110002

Ph: 23254990/23254991

MICRO MEDIA

Shop No. 5, Mahendra Chambers,

150 DN Rd. Next to Capital Cinema,

V.T. (C.S.T.) Station, MUMBAI-400 001

Ph: 22078296/22078297

DECCAN AGENCIES

4-3-329, Bank Street,

Hyderabad-500195

Ph: 24756967/24756400

BPB BOOK CENTRE

376 Old Lajpat Rai Market,

Delhi-110006

Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road,

Darya Ganj, New Delhi-110002 and Printed by him at Repro India

Ltd, Mumbai

www.bpbonline.com

Dedicated to

My family

About the Author

Sunil Patel has completed his Master’s in Information Technology

from the Indian Institute of Information Technology-Allahabad, with

a thesis focused on investigating 3D protein-protein interactions

with deep learning. Sunil has worked with TCS Innovation Labs,

Excelra, and Innoplexus before joining Nvidia. The main areas of

research were using Deep Learning, Natural language processing

in Banking, and healthcare domain. Sunil started experimenting

with deep learning by implanting the basic layer used in pipelines

and then developing complex pipelines for a real-life problem.

Additionally, Sunil has participated in CASP-2014 in collaboration

with SCFBIO-IIT Delhi to efficiently predict possible Protein

multimer formation and its impact on diseases using Deep

Learning. Currently, Sunil works as Data Scientist – III with Nvidia.

In Nvidia, Sunil has expanded his area of interest to computer

vision and simulated environments, and he extensively works in

the banking, defense, and healthcare verticals areas. Sunil is

currently focused on using GPUs for high-fidelity physics

simulation. He has 3 pending US patents and 4 publications in

the Deep Learning domain. To know more about his current

research topic and interests, you can check out his LinkedIn

profile:

About the Reviewer

Anurag Punia has 6 years of experience in data science and

machine learning, with a special interest in topic modeling,

information retrieval, and named entity recognition under the

subfield of natural language processing. He has worked and

delivered several data science projects across industry verticals, like

insurance, asset management, marketing, tourism, and real estate.

Currently, he is part of the center of excellence of a leading

logistics company in Dubai, UAE. Anurag has a research-focused

BS-MS dual degree from IISER Bhopal with a major in physics.

He can be reached at anurag.punia@gmail.com or

https://www.linkedin.com/in/anurag-punia-data-scientist/

Acknowledgements

First and foremost, I would like to thank God for giving me the

courage to write this book. I would like to thank everyone at BPB

Publications for helping me polish it and finally converting my

writing to paperback.

I would also like to thank my parents, wife, and brother for their

endless support and for helping me in numerous ways.

Lastly, I would like to thank my critics. Without their criticism, I

would never be able to write this book.

Sunil Patel

Preface

“The world’s most valuable resource is no longer oil but its data”.

Nowadays, titans and the most valued firm in the world like

Amazon, Google, Apple, and Microsoft have similar concerns as

were raised for oil a century ago. Data is changing the way we

live, and the amount of data generated in the past few years is

more than that generated since human beings have existed. The

amount of data is expected to grow exponentially with the boom

in connected devices, personal assistants, blockchain, and mobile

devices.

The condition for the storage of data is getting favorable, as

storage devices are getting cheaper 3X every 3 years. Hardware

giants like Nvidia already claimed to have broken Moore’s law,

which also indicates the exponential growth in processing power.

Today’s world is highly favorable to the data-centric economy. And

that’s exactly why data is the next oil.

Unstructured and structured data is increasing at a similar rate.

The former comes from a majority of sources, and algorithms are

constantly being discovered to store and assimilate such data.

Unstructured data can be anything, for example, scientific

literature, randomly clicked selfies, chat messages, sensor data

from self-driving vehicles, and voice/video over the Internet. It is

rich in information, but processing such data and training a

machine using such data is challenging. However, advancement

has been made in gaining better understanding of unstructured

data and using such a pre-trained network for supervised learning

in recent years. This technique is popularly known by the term

“Transfer Learning”.

Transfer learning decreases training time and also requires less

amount of training data to achieve state-of-the-art results. Another

type of data is structured data, which is majorly manually curated

or generated semi-automatically. Actually, structured data is a bar

of gold, an asset that costs millions and is capable of paying

back in billions.

Machine learning is being extensively used in the field of medical

diagnostics. Recently, the Food and Drugs Administration (FDA)

developed a robot named IDx DR as the first autonomous AI-

based diagnostic system. Yet another San Francisco startup

developed a text recruit system called Automated Recruitment

Interface (ARI), which is capable of holding a two-way conversation

with candidates. It is also capable of posting job advertisements

and openings, scheduling and conducting interviews, and

maintaining all updates along the entire hiring funnel. Startups

and firms are developing a system like Artificial Intelligence Virtual

Artist (AIVA). Firms like Melodies and Google are generating

music using artificial intelligence.

In a popular blog by Andrej Karpathy “The Unreasonable

Effectiveness of Recurrent Neural Networks,” he demonstrated that

LSTM Models can easily generate lyrics. The days are not far

when there will be robots making food in the restaurant and

serving it while singing beautifully. This generated music will be

rated by you and will be instantly sold live in another part of the

world based on your ratings. The new wave has been created by

Google duplex—an AI engine that can make a call on your behalf

to make reservations.

Machine learning has an equal number of applications in the

fields of vision and text. Vision-related use cases exist in robotics,

self-driving cars, self-flying vehicles, optical character readers,

surveillance cameras, and security systems. The application of

machine learning techniques on text is also known as Natural

Language Processing (NLP), which can be applied to applications

like text summarization, sentiment analysis, intend analysis,

plagiarism detection, language translation, topic extraction, and

audio language translation, text to speech and speech to text.

In the last 2 years, the GLUE score rose by almost 15 points

from 64.7 to 80.4. The General Language Understanding

Evaluation (GLUE) benchmark is a collection of resources for

training, evaluating, and analyzing natural language understanding

systems. Various state-of-the-art models like ELMo, ULMFiT,

OpenAi transformer and Brat like models have come up and are

constantly shaking up previous state-of-the-art models. This is an

ImageNet movement for text.

This book is a comprehension of all the resources requires to not

only learn NLP but to master it, and it is written keeping a

beginner’s skillset in mind. This book covers the entire spectrum,

from understanding the basic concept of machine learning to the

application of complex networks like generative networks,

reinforcement learning, and speech processing in NLP.

In chapter we will learn about the basics of machine learning. The

chapter includes basic concept like understanding data, when to

apply machine learning, understanding various aspects of training

a model, the founding principle of machine learning and AI,

generalization, and dealing with overfitting and underfitting. This

chapter will cover diagnostic concepts like bias-variance tradeoff,

training and learning curves, generalization, and regularization

concepts.

In chapter we will learn basic text processing. This chapter will

cover the use as well as the implementation of techniques like

stemming, lemmatization, and tokenization. This chapter covers

basic operation and network building with Pytorch. Learning about

Pytorch helps users quickly compile the network as per the

desired thought process. As the scope of this book is focused

toward NLP, we will also explore a utility called TorchText. It

alleviates many problems related to text processing and also helps

easily distribute data to multiple GPUs.

Chapter 3 is about converting/ representing our text into vectors

so that it can be easily consumed by models. This chapter will

cover various vital techniques like TF-IDF and Word2Vec. In

addition to traditional techniques, also it will cover character-based

vector embedding techniques like FastText.

Chapter 4 will cover Recurrent Neural Network (RNN), which is

considered a milestone in sequence processing techniques. Going

ahead of Vanilla RNN, this chapter will also help readers

understand as well as implement the Gated Recurrent Units

(GRU) and Long Short-Term Memory (LSTM) Units. This chapter

will cover topics like a batch implementation of recurrent

networks, attention architecture, and highway networks that enable

us to train very deep sequence models.

Chapter 5 will take you through Convolution Neural Networks

(CNN), which are heavily used in text processing nowadays. In

this chapter, we will learn basic convolution operations and the

effect of various parameters related to CNN to the accuracy of the

concerned task. This chapter also covers concepts like Dropout

and batch normalization, which help achieve greater accuracy with

CNN. We will also cover advanced architectures like DenseNet.

After covering everything required to get going, it’s time to use

the generated model in an unsupervised way or by someone else

in our task.

Chapter 6 will explore vital topics required to apply transfer

learning with text. This chapter will cover advanced architectures

like ELMo-Bilm, sentence to vector, skip thought and InferSent.

All previous chapters make for a good foundation, and now we

will apply a combination of all techniques to practical NLP tasks

like sentiment analysis, implementing various approaches of topic

modeling, text generation, building named entity recognition,

building text summarization engine, and building language

translation model.

Chapter 7 will provide hands-on experience regarding all the listed

use cases.

Chapter 8 is all about complex networks and very recent

techniques. It will take you through Recurrent Convolution Neural

Network (RCNN) and Siamese Network. This chapter will cover

advanced techniques like Random Multi-Model, Snapshot Ensemble

techniques, CTC loss Recognition, and Sentence Piece. It will also

explore a wonderful application of RNN and CNN in generating

captions from images.

Chapter 9 will help you understand the fascinating world of Ian

Goodfellow and concepts like Nash Equilibrium, KL-Divergence, KL-

Divergence, JS-Divergence and KullbackLeibler Divergence to

understand working on the Generative Adversarial Network. We will

look at tips and tricks to solve the problem of an unstable

gradient in the GAN. Finally, we will understand and code

different types of GAN like Variational Autoencoder, and learn the

application of GAN in generating images from text.

Chapter 10 will walk you through more advanced techniques of

speech processing. It will cover how audio signals are captured

and stored and look at a small use case of spoken digit

recognition with an end-to-end model. This chapter will also cover

advance frameworks, like deep speech and deep voice, and their

usage is covered.

At the end, the book look at how to perform faster training and

better deployment by utilizing the latest development in hardware

and software.

This book covers all the necessary topics from the basics of

machine learning to advance NLP techniques. That said, one

should know the basic concepts of machine learning to quickly

grasp these topics. This book assumes that you have hands-on

experience with the basics of machine learning and libraries like

Numpy, NLTK, Matplotlib, PIL, and Scikit-Learn. Libraries like

PyTorch deal with the differentiation required during the

backpropagation of Deep Learning models and keeps users away

from the mathematics required in building such models from

scratch. We will use PyTorch, but understanding basic algebra,

statistics, and vector space will aid easier grasping.

Downloading the code

bundle and coloured images:

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/fxrpk

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content to

provide with an indulging reading experience to our subscribers.

Our readers are our mirrors, and we use their inputs to reflect

and improve upon human errors, if any, that may have occurred

during the publishing processes involved. To let us maintain the

quality and help us reach out to any readers who might be

having difficulties due to any unforeseen errors, please write to us

at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by

the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book

published, with PDF and ePub files available? You can upgrade to

the eBook version at www.bpbonline.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get

in touch with us at business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up

for a range of free newsletters, and receive exclusive discounts

and offers on BPB books and eBooks.

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit

www.bpbonline.com and apply today. We have worked with

thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You

can make a general application, apply for a specific hot topic that

we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at In

case there's an update to the code, it will be updated on the

existing GitHub repository.

We also have other code bundles from our rich catalog of books

and videos available at Check them out!

PIRACY

If you come across any illegal copies of our works in any form

on the internet, we would be grateful if you would provide us

with the location address or website name. Please contact us at

business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book, please visit

REVIEWS

Please leave a review. Once you have read and used this book,

why not leave a review on the site that you purchased it from?

Potential readers can then see and use your unbiased opinion to

make purchase decisions, we at BPB can understand what you

think about our products, and our authors can see your feedback

on their book. Thank you!

For more information about BPB, please visit

Table of Contents

1. Understanding the Basics of Learning Process

Structure

Objective

Pre-requisites

Learning from Data

Implementing the Perceptron Model

Generating and Understanding “Fake Image Data” and Binary Labels

Understanding Our First Tiny Machine Learning Model

Coding the Model with PyTorch

Confirming the Convergence of the Model

Error/Noise Reduction

Understanding Confusion Matrix and Derived Measures

Defining Weighted Loss Function

BLEU Score

Bias-Variance Problem

SciKit Learn Functions to Build Pipeline Quickly

Managing the Bias and Variance

Learning Curves

Loading Data, Pre-processing

Using Simple Regression

Using Random Forest Regression

Regularization

L1 Regularization (Lasso Regularization)

L2 Regularization (Ridge Regularization)

Implementing Lasso Regression

Implementing ElasticNet

Training and Inference

Software-based Accelerated Inferring

Hardware-based Accelerated Inferencing

The Three Learning Principles

Model related concepts

Data related Concepts

Conclusion

2. Text Processing Techniques

Structure

Objective

Pre-requisites

Understanding the Language Problem

Introduction to Data Retrieval and Processing

Scrapping the Web Page

Parsing Data from XML and JSON Format

Understanding Stemming

Understanding Snowball Algorithm

Understanding Lemmatization

Understanding Tokenization

Using NLTK Tokenizer

Using Spacy Tokenizer

Getting Familiarized with PyTorch

Installation

Using TorchText

Visualizing Using TensorBoard

Showing Scalar Values on TensorboardX

Projecting Images to TensorboardX

Showing Text on tensorboardX

Projecting Embedding Values on tensorboardX

Conclusion

3. Representing Language Mathematically

Structure

Objective

Prerequisite

Encompassing knowledge to numbers

Understanding the different approaches of converting a word/token

to its embedding

Understanding co-occurrence matrix

Constructing a co-occurrence matrix

Understanding TF-IDF

Term frequency

Inverse document frequency

Constructing TF-IDF matrix

Understanding Word2Vec

Understanding methods to train Word2Vec

Implementation

Word2Vec improved version

Sub-sampling

Word pairs and phrases

Negative sampling

Understanding GloVe

Defining learnable parameters

Defining loss function

Many important components

Understanding character-based embedding

Character-based embedding generation

Conclusion

4. Using RNN for NLP

Structure

Objective

Pre-requisites

Understanding Recurrent Units

Rolling and Unrolling

Implementing the Concept of Embeddings

Downloading Dataset

Pre-processing

Training

Understanding Advance RNN Units

Gating Mechanism in LSTM

Modified LSTM Units

Understanding and Implementing GRU

GRU with PyTorch

Understanding the Sequence to Sequence Model

Implementing Sequence Encoder/Decoder

Encoder

Decoder

Actual Training

Evaluation

Understanding Batching with Seq2Seq

Decoder Phase

Encoder and Decoder with Batching

Decoder

The Loss Function for Sequence to Sequence

Translating in Batches with Seq2Seq

Implementing Encoder/Decoder Capable of Batch Processing

Encoder

Decoder

The Loss Function for Sequence to Sequence

Implementing Attention for Language Translation

Encoder

Attention Mechanism

Decoder

Conclusion

5. Applying CNN in NLP Tasks

Structure

Objective

Pre-requisites

Understanding CNN

Understanding Convolution Operations

Convolution Layers

Padding

Stride

Pooling layers

Fully Connected Layers

Convolution 1D

Convolution 2D

Pool Layers

Rectifier Linear Unit (Relu)

Using Word Level CNN

Pre-processing

Embedding

Convolution Layers

Using Character Level CNN

Understanding Character Representation

Network Architecture

Using Very Deep Convolution Network

The Convolution Block

Understanding the Network

Training Deeper Networks

ResNet

Highway Network

DenseNet

Fundamental Block of ResNet

Fundamental Block of Highway Network

DenseNet

Conclusion

6. Accelerating NLP with Transfer Learning

Structure

Objective

Pre-requisites

Introduction

Understanding the Transformer

Source and Target Masking

Positional Encoding

Converting Sentence to Vector

Sentence to Vector

Skip Thought

Getting to Know Contextual Vectors

Using the Pre-trained Model

Training Supervised Embedding

Playing with InferSent

Understanding and Using BERT

Conclusion

7. Applying Deep Learning to NLP Tasks

Structure

Objective

Technical Requirements

Topic Modeling

Applying LDA

Text generation

Understanding the Network

Building Text Summarization Engine

Abstractive Text Summarization

Building Language Translation Using a Transformer

Using a Transformer

Advancing Sentiment Analysis

Understanding Attention Mechanism

Building Named Entity Recognition

Word-level NER

Character-level NER

Conclusion

8. Application of Complex Architectures in NLP

Structure

Objective

Technical Requirements

Understanding SentencePiece

Understanding Random Multi-Model

Creating Flexible Networks

Using RMDL

Applying RMDL on Reuter Data

Ensembling by Taking a Snapshot

The Learning Rate Modifier

Recording Snapshots

Predicting Using Snapshots

Getting to Know Siamese Networks

Dataset Description

Loading and Pre-processing Data

Constructing a Sister Network

The Stem

Application of RCNN

Preparing the Dataset

Why Is It Difficult?

How Can It Be Solved?

Predicting Using CNN

Predicting Using RCNN

Understanding CTC Loss

The Simplest Choice

How Does CTC Work?

Loss Calculation

Understanding Decoding

Installation

Usage

Captioning Image

Downloading the Data

Implementation

Encoder Module

Decoder Module

Beam Search

Variants

Conclusion

9. Understanding Generative Networks

Structure

Objective

Technical Requirements

Understanding Unsupervised Pretraining

GAN Components

The Generator

The Discriminator

The GAN Architecture

The Loss Function

Implementing GAN for MNIST

The Understanding Theory behind GAN

Generating an Image from the Description

Conclusion

10. Techniques of Speech Processing

Structure

Objective

Technical Requirements

Learning about Docker

Getting to Know Phonemes

Loading an Audio File

Playing an Audio File

Visualizing the Signals

Feature Extraction

MFCC — Mel-Frequency Cepstral Coefficients

Spectral Centroid

Spectral Rolloff

Training a Small Network

Feature Extraction

Constructing the CNN Model

Training and Estimating Performance on the Test Set

Understanding Speech to Text

Installation

Datasets

Pretrained Model

Training

Visualizing Training

Dataset Augmentation

Checkpoints and Continuing from Checkpoint

Testing/Inference

Running a Server

Understanding Text to Speech

Grapheme to Phoneme Model

The Segmentation Model

Phoneme Duration and Fundamental Frequency Model

Audio Synthesis Model

Download Dataset

Installation

Preprocessing

Training

Monitoring using TensorBoard

Using the model for synthesis

Conclusion

11. The Road Ahead

Structure

Objective

Efficient Training

Parallel Data Loading

Utilizing Hardware Resources

Efficient Deployment

Hardware-related Optimizations

Conclusion

Index

CHAPTER 1

Understanding the Basics of Learning Process

This chapter covers the most basic aspects of machine learning. It

will help you in understanding the basic mathematical

representation of learning algorithm and teach you how to design

a machine learning model from scratch. After constructing this

model, we will understand the methods used to gauge the

model’s prediction accuracy using different accuracy metrics. Going

further, we will coer the bias-variance problem and diagnose such

a problem with a technique called learning curves. Once we get

our model correct, we need it to generalize well on unknown

datasets that can be understood through a chapter on

regularization. After perfecting such a model, it must be efficiently

deployed to help improve speed and accuracy.

Structure

In this chapter, we will cover the following topics:

Learning from data

Error/noise reduction

Bias-variance reduction

Learning curves

Regularization

Training and inference

The three learning principles

Objective

Building a simple model for efficient training and gauging the

model’s accuracy will be covered in this chapter. It will help you

understand the usage of popular software and hardware

acceleration for faster training and inference. We’ll end this

chapter with three learning principles that are extremely important

to machine learning.

Pre-requisites

I have provided some of the examples through code, and the

code for this chapter are present in ch1 folder at GitHub

repository Basic know-ledge of the following Python packages is

required to understand this chapter:

NumPy

Scikit-Learn

Matplotlib

Pandas

This chapter has one example that uses PyTorch for

demonstration. If you don’t know PyTorch, we will cover it in

detail in Chapter Text Pre-Processing Techniques in NLP.

Learning from Data

In this data-centric world, a little improvement in the existing

application can potentially help earn millions. We all remember a

big prize (the $1,000,000) that Netflix gave to the winner for

improving the algorithm’s accuracy by 10.06%. A similar

opportunity exists in financial planning, be it Forex forecasting or

trade market analysis. Minute improvements in such use cases

can provide beneficial results. One must explore the entire logic

behind the process to improve something; this is what we call

learning from data. Machine learning is an interesting area where

one can use historical data to make a system capable of

identifying observed patterns in the new data. However, machine

learning cannot be applied to all problems; a rule of thumb is

considered to decide whether machine learning should be applied

to a given problem:

There must exist a hidden pattern

We cannot find such a pattern by applying simple mathematical

approaches

There must be historical/relevant data about the task concerned

In this chapter, I will start with a basic perceptron model to give

you a taste of the learning model. After building the perceptron

model, I will discuss Error/Noise and its detection using bias-

variance and learning curves. In the learning curve, we will look at

how the complexity of the algorithm helps mitigate a high-bias

problem. Then, we will cover regularization techniques to achieve

better generalization. All these techniques help get a better model,

and then it’s time to deploy such a model efficiently. Later in the

chapter, we will cover techniques for faster and better inferencing

and then look at the three learning principles that are not directly

related to machine learning but help in giving state-of-the-art

performance. Before going further, we will briefly discuss the

mathematical formalization of any supervised learning problem.

Let’s assume that we are talking about supervised learning

paradigm. Supervised learning takes finite pairs of X and Y for

learning. X and Y can be of the different types according to

learning the goals. In the following table, we can see some

examples with the nature of X and Y described for different

learning problems:

problems:

problems: problems: problems: problems: problems:

problems: problems: problems: problems:

problems: problems: problems: problems:

problems: problems: problems: problems:

problems: problems:

problems: problems:

problems: problems: problems: problems: problems:

problems: problems: problems: problems: problems:

problems: problems:

Table 1.1

Here, Y is the label for X. Each X and Y is paired, as shown in

the following equation:

=

Where are individual data points in and are individual data points

in The main task of our hypothesis function f is to apply it over

to predict = The goal is to predict so that it is the same as or

near the original label and the Error between the predicted label

and the original one(|Ŷ – Y|) tends to become 0. The function is

= …, The overall procedure to learn any function can be

summarized as in the following flow diagram:

Figure 1.1: Supervise learning paradigm with all major components

involved in training and evaluation.

As shown in the preceding figure, any of the hypotheses h is

used for making predictions. Here, hypothesis can be anything like

Linear, Logistic, Polynomial, SVM, RF, or Neural Network.

Hypothesis h is also called function f in general terms.

There are also other types of learning techniques, like

unsupervised learning and reinforcement learning. An unsupervised

learning paradigm has no label attached to the data; it only has ∈
and there is no Y label. In fact, unsupervised methodologies are

gaining popularity nowadays and are responsible for pushing the

state-of-the-art model in the field of vision and NLP even higher.

Popular models like Bert and Megatron are examples of

unsupervised models. On the other hand, reinforcement learning is

a technique where an agent tries to maximize the immediate or

cumulative reward by learning/adapting to a given environment.

We will learn and apply unsupervised learning to NLP problems in

the upcoming chapters.

Implementing the Perceptron Model

Well, this chapter is a little out of sync, but we will discuss the

perceptron model. Perceptron with no activation function is a

linear model. The perceptron algorithm was invented by Frank

Rosenblatt in 1957 at the Cornell Aeronautical Laboratory. To date,

this is the most important and widely used model in the course

of the machine learning.

Let’s take all the features, that is, and try to derive a hypothesis h

that maps y ⇒ ŷ., where ŷ is the predicted label and y is the

original label. Our hypothesis h can be one of the simplest

possible perceptron models with a linear activation function. The

preliminary hypothesis can be thought of as in the following

equation:

Where are learnable weights, changes as per the feedback signal

received due to calculated loss, and is the bias term. Bias is used

in the Perceptron network for phase shifting. The preceding

equation can be thought of as the step function, a simple linear

function if the predicted value is above the threshold then then

the label is 1 else 0.

Where X) is the Matrix product. Matrix-based computations are

faster than iteration-based computations, and GPU supports

Matrix-based operations well. To see whether this hypothesis can

solve our problem, I have taken a hypothetical dataset and applied

the discussed hypothesis. In the present model, I will use the

Mean Squared Error loss. MSE loss can be defined as:

We will use the Stochastic Gradient Descent as the optimizer that

tries to find the best solution by exploring multi-dimensional

terrain. We will learn about how SGD works while discussing the

workings of RMS prop (another advanced optimizer) in the

upcoming chapters. Although terms like SGD and MSE might

seem intimidating, these are simple mathematical equations, the

purpose of which will be better understood as we move ahead in

the chapter.

Generating and Understanding “Fake Image Data” and Binary

Labels

The following fake data with two classes—0 and 1—are generated

to validate the preceding hypothesis:

Figure 1.2: An imaginary dataset to demonstrate learning using a

simple perceptron model.

This simple dataset is 10*10 matrix, with each location having a

random float shown by variable color temperature. Class 0 has 1

at locations and 0 at locations On the other hand, Class 1 has 0

at locations and 1 at locations Only 8 of 100 indicative points are

present, and our algorithm must differentiate between these two

classes based on these 8 points. The other 92 points are

considered noise to the dataset, and the algorithm must be good

enough to avoid this noise.

Understanding Our First Tiny Machine Learning Model

A simple model can be visualized as follows:

Figure 1.3: Simple Perceptron model with the step function.

As shown in the figure, our model accepts 100 input features

(10*10 flattened). Each input is multiplied by weight to produce

the final output. The input of size [1, 100] is multiplied with the

weight matrix [100, 2]; multiplication yields [1, 2] output, on which

the threshold (step) is applied. The main question is, why are

there two outputs? Generally, the output is provided as one-hot

encoded; 0 is encoded to [1, 0], and 1 is encoded to [0, 1]. Now,

let’s understand why one hot encoding. If we use only one output,

where it can be 0 or 1, the model may predict 0.5 as the output

every time and take this as the better alternative to accurately

predicting 0 and 1. This problem worsens when the number of

classes increases, but one-hot encoding forces the network to

predict well in extremes and minimizes loss.

Coding the Model with PyTorch

I have used PyTorch version 0.4.1 to design the preceding simple

model. PyTorch lets us design the network as per our thought

process, and the following is the simple network we just

discussed. If you don’t get this, we will cover these things in

detail in Chapter Text Processing Techniques. Here, network can be

designed simply by extending the torch.nn.module class. Then, you

must implement two functions, namely __int()__ and The __init__

function initializes as well as defines various layers. In our

network, we have defined a simple linear layer (nn.Linear) that

takes two inputs: input dimension and output dimension. In our

case, the input dimension is 100, and the output dimension is

The following code block illustrates how to construct a simple

network that takes a vector as the input and produces two-

dimensional outputs:

class simple_module_1(nn.Module):

def __init__(self):

super(simple_module_1, self).__init__()

self.simple_linear = nn.Linear(100,2)

def forward(self, input):

return self.simple_linear(input)

We don’t have to worry about the weight and its dimensions, as

the framework will take care of that based on the input and

output size.

Confirming the Convergence of the Model

After training for 200 epochs, the network determines the

peculiarities between classes. As the epochs progresses, loss

decreases and accuracy increases.

The following image shows the progress of Loss/ Accuracy as

Epochs progresses:

Figure 1.4: The progress of loss/accuracy as Epochs progresses.

To demonstrate the simplest learning model, I have generated

dummy data; you can experiment the same with the

dummy_data.py Python script. I used imaginary data generator

function to produce dummy data and put it into the

apply_perceptron.py script. In many other functions for data

generation, PyTorch Model, Loss Calculator, Optimizer, Accuracy

Calculator, and function to render plot are present.

The following code uses mean square error as the measure of the

error. It is one of the loss functions used according to learning

goals. We will discuss the mathematics of these loss functions in

the next section on error/noise Also, the SGD optimizer decreases

loss by back-propagating error and adjusting weights:

define loss

objective = nn.MSELoss(reduce=True)

define Optimizer

optimizer = optim.SGD(simple_module.parameters(),lr=0.01)

Error/Noise Reduction

Suppose we have a dataset, as shown in the following figure:

Figure 1.5: Data before and after applying the non-linear

transformation.

Suppose we have the data shown in the preceding figure where

each point belongs to superset in short ∈ To this data, we apply
a transformation φ and the new dataset distribution, as shown in
the same figure (B), can be given as = and ∈ Looking at the
figure (B), we understand that the data is now linearly separable,

and any linear model like linear regression or Perceptron model

can separate such data. Transformations like φ are never perfect
and often end up categorizing some of the points wrong. As

shown in the preceding figure some of the points are wrongly

categorized by the separating line. Now we need measures to

quantify these errors.

Mathematically, we measure such errors by loss functions like the

following:

Mean squared error:

Mean absolute error:

Cross-entropy error:

The loss function can also be problem-specific. In the next

chapter, we will define sequence to sequence loss, which will be

used particularly for language translation. The triple loss is a

custom loss function used in style transfer applications. In fact,

we must provide different penalties for different cases to meet

specific requirements. We will discuss such a case in this chapter.

Understanding Confusion Matrix and Derived Measures

To quantify the goodness of our model, we generally use the

confusion matrix. It is a table that allows the visualization of a

comparison of our algorithm’s performance. It has four values

based on four cases:

True Positives These are cases in which we predicted yes, correctly

True Negatives We predicted no, correctly

False Positives We predicted yes, wrongly

False Negatives We predicted no, wrongly

The confusion matrix looks as follows:

follows: follows:

follows: follows: follows:

follows: follows: follows:

Some of the derived performance measures like accuracy,

precision, sensitivity, and specificity can be calculated as follows:

Specificity, Selectivity or True Negative Rate(TNR)=TN\/(TN+FP)

Sensitivity, Recall, Hit Rate, or True Positive Rate(TPR)=TP\/(TP+FN)

Precision or Positive Predictive Value (PPV)=TP\/(TP+FP)

Accuracy=(TP+TN)\/(TP+TN+FP+FN

Apart from these measures, the confusion matrix helps derive

other measures like F1-Score, Matthews Correlation Coefficient

(MCC) and informedness.

Defining Weighted Loss Function

As discussed, loss function should be designed as per the end

goal, and mistakes should be penalized accordingly by providing

proper weights. To understand this concept, let’s look at a few

use cases:

Case 1 - A case of the grocery Suppose a grocery store decides to

provide 25% off to their loyal customers, who are identified at the

checkout counter by face recognition. Now, we gauge the accuracy

of facial recognition based on the confusion matrix. In this case,

our confusion matrix should be designed after considering the

following:

TP and TN will have 0 penalty

FP means a customer was not very frequent but still got the

discount

FN means a loyal customer’s face was not identified correctly, and

so they failed to get discount

In this case, more penalties should be applied to FN cases. We

could not detect a loyal customer due to a system error, and we

did not provide them with a discount. It leaves a bad impression,

and we could lose the customer, so a higher penalty should be

imposed on FN cases. FP cases do not do any harm; if a

customer accidentally gets the discount, they may like it and may

visit again. FP cases may eventually enhance word-of-mouth

promotion. In the loss function, if the penalty for FP cases is

one, the penalty for FN cases should be 100.

Case 2 - An ATM security Let’s say a company is designing the

ATM feature where you press your thumb and get your money.

The cases are as listed:

TN and TP are normal cases with 0 penalty

FP are cases where a person did not have an account, but got

access to a random account and money when they put their

thumb

FN are cases when a person with an account was not recognized

Here, FP cases should be taken very seriously. If the penalty for

FN is 1, the penalty for FP should be 10,000.

In the upcoming chapters, we will discuss regularization to help

us reduce errors in our algorithm and improve generalization to

the test data; this is the reality of real-life data. Most often, you

will deal with such data, and you’ll rarely find clean data without

noisy targets. The noisy target can be defined as the sum of

deterministic target and some noise. Deterministic noise can be

taken care of using various hypotheses or different feature sets.

Noise is out of our control, and features to deal with such data

are not present in our example set. Also, confusion matrix is not

the only type of matrix used to quantify learning.

BLEU Score

BLEU score is another measure for the quality of Language

Translation and Text Summarization. The mean Average Precision

(mAP) is used to measure the quality of the object detection

algorithm. The GLUE benchmark is used to measure the quality of

the language embedding task. There are many such measures,

which we will discuss in detail.

Bias-Variance Problem

Our goal is clear—keep error, particularly test error, minimal. Two

major sources of errors are bias and variance. To understand the

logic behind the learning curve, we must understand bias-variance

and the trade-off between them:

Figure 1.6: Illustrating bias-variance trade-off in the data.

Bias is a source of error, as a model with higher bias pays less

attention to the training data and oversimplifies the model.

Mathematically, bias can be formalized as follows.

Suppose we have training data and real-valued labels associated

with each data point Let’s say we define a function which

effectively estimates taking but with minimum error Here, Here

can be any learning algorithm like logistic regression, Perceptron,

or any complex polynomial model. The mathematical formula for

the same is Ŷ = + where is the function which is very near to

ideal function for minimal error, as shown in the following

equations:

Where if the error E is minimum and tends to become 0 in ideal

cases. Bias can be mathematically represented as:

There exist outliers in any distribution, and our function cannot be

perfect enough to take care of all the points and still generalize

well. So, there will always be an error E always, regardless of the

hypothesis used. Bias is also known as under-fitting, where your

model is incapable of learning from data and eventually ends up

with high training and test error.

Let’s look at the possible cause of the high bias:

No pattern The first assumption whereby we apply machine

learning is that the data must have a pattern. If there is no

pattern, no hypothesis can model it, so the model ends up with

high training and test error. No model can solve this problem

unless more representative data is provided. There can be an

issue with the imbalanced dataset.

Modeling The model’s architecture is incapable of learning the

intricacies of the data. There can be multiple reasons like the use

of the wrong activation function or a high learning rate. There can

be an issue if the data is not evenly distributed among batches

and results in improper gradient propagation per batch and, so,

no learning. Improper loss implementation can be one of the

problems.

We can see a definite way to tackle the high bias problem:

Train Sometimes, algorithms take longer to learn higher-level

abstraction and then converge quickly. This scenario is observed

with image segmentation problems and more with deeper

convolution neural network models. Allowing the algorithm to run

for longer with a lower learning rate helps with convergence.

Train complex model / new model Another reason is that the

model is not complex enough to learn the patterns in the data.

For example, if the feed-forward model is applied to the text

sentiment analysis problem, it may perform poorly as compared to

the performance of the recurrent neural network applied to the

same problem. Using non-linear kernels in SVM can help mitigate

the problem.

Normalizing/increasing Adding more characteristic features can

help. This can be understood with an example. One may never be

able to predict the price bucket of the car by looking at some

features like its color and length, but adding features like its

maximum speed, gear shifting pattern, and pickup can help. In

the case of the numerical feature, normalization of the feature

between 0 and 1 can help with better convergence.

Adding This technique certainly helps and is widely used in the

deeper convolution neural network models. Batch normalization is

a well-known technique.

As we saw in the bias-related problem, the model was not

flexible/complex enough to identify the patterns in the data.

Variance is on the other side, where the model just mugs up the

data. In other words, the model is specifically getting used to the

training data and not to generalize the test data. Variance, also

known as overfitting, can be mathematically denoted as .

High variance can be solved using the following techniques:

Increase We experience the high variance problem when there are

lower data points and highly complex models. In this case, our

model learns all the intricacies of the data and training error

tends to reach zero, so no more learning occurs. Such a model

provides poor performance when applied to test data belonging to

a slightly different distribution than the training data.

Decrease the number of The trained data was so properly

preprocessed that it has all necessary features, and the model

takes thesedirect features and learns around them. When

unprocessed test data is provided, the model cannot look at the

feature and performs poorly.

The model may be fitting to noise in the data, due to which it is

providing poor results on test data. We can reduce the model’s

flexibility by applying constraints, which is also known as

regularization. There is a definite solution in data science for this

problem—the application of regularization techniques. Four types

of regularization techniques can help overcome overfitting:

L1 regularization

L2 regularization

Elastic Net

Dropout

Reduce model Certain time-reducing model parameters also help a

lot. Reducing the network by decreasing the layers in feed-forward

network and CNN can prove helpful, and decreasing the hidden

state size in the recurrent neural network can also help.

The We already learned about the bias-variance trade-off, so it’s

time to diagnose where the problem lies. Several methods can

help identify such a problem, one of which is to plot the learning

curve. After understanding the bias-variance problem, it is essential

to understand, differentiate the problem, and solve it

systematically. Mathematically, bias, variance, and some irreducible

errors contribute to the overall error. This can be represented as:

To practically model the bias-variance trade-off, we will take the

help of polynomial equations and demonstrate the problem by

taking polynomial equations of different degrees. Predictions are

made on the held-out test set, and MSE is reported. To

demonstrate the bias-variance problem, we will take the help of

Scikit learn functions like Polynomial Features, Linear Regression,

and Pipeline. The following code block defines a function that

produces labels (Y) for a given value of X. This function will help

us generate example data:

def true_fun(X):

“””

given X it will provide its mapping to Y by sing function

np.cos(1.5 * np.pi * X)

:param X:

:return:

“””

return np.cos(1.5 * np.pi * X)

We take 30 samples and calculate the polynomial of order and

will generate random samples from a uniform distribution over

The label for this function will be generated by the true_fun

function:

n_samples = 30

degrees = [1, 3, 9, 15]

X = np.sort(np.random.rand(n_samples))

y = true_fun(X) + np.random.randn(n_samples) * 0.1

SciKit Learn Functions to Build Pipeline Quickly

We calculate polynomial features for each degree of the

polynomial, and these polynomial features are used to perform

linear regression. Such a model with polynomial features is fit for

linear regression. Let’s use the pipeline function to stack

polynomial features and linear regression in one pipeline. Then,

we’ll use the pipeline function to predict text data:

polynomial_features = PolynomialFeatures (degree=degrees[i],

include_bias=False)

linear_regression = LinearRegression()

pipeline = Pipeline([(“polynomial_features”, polynomial_features),

(“linear_regression”, linear_regression)])

pipeline.fit(X[:, np.newaxis], y)

Evaluate the models using cross-validation

scores = cross_val_score(pipeline, X[:, np.newaxis], y,

scoring=”neg_mean_squared_error”, cv=10)

X_test = np.linspace(0, 1, 100)

plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label=”Model”)

We can see that polynomial with degree 1 is not fitting for the

data, so it is called underfitting. A polynomial with a degree

higher than 3 fits the data so well that it does not generalize to

the test data and ends up with higher MSE, so it is called as

overfitting. The following plot makes it clear that the MSE is

lowest with Degree = 3. It is the point of equilibrium between

bias-variance and model complexity. You may visit the code

bias_variance.py scripts to run or experiment with the code that

produced the plots. The following image is generated by taking

different degrees of polynomials to demonstrate bias-variance

trade-off:

Figure 1.7: Demonstrating bias-variance trade-off using a polynomial of

different power.

Ideally, the plot of error versus model complexity looks like this:

Figure 1.8: Showing equilibrium between bias and variance.

As the model’s complexity increases, the bias increases, and so

does the variance. The model with a complexity where the bias

and variance are minimum should be selected for inference. Low

complexity means the model is complex enough to absorb the

complexity of data, so the problem of high variance occurs when

we increase the model complexity. However, if we increase it

gradually, given the model complexity, both the bias and variance

are minimum at a point. As we further increase it, the model’s

complexity variance increases, also called model over-fitting

problem.

Managing the Bias and Variance

Let’s look at certain measures that can manage the bias and

variance problem:

Bagging and Bagging refers to creating various partitions of the

data and using random selection with replacement, and using

each sample to train a model. Test time prediction is made using

all these models, and the final prediction is made based on

averaging or voting. This technique is also known as bagging or

bootstrap aggregating. The Random Forest model makes good use

of the bagging technique. Numerous trees are constructed based

on each sample partition, and the entire model’s bias is the same

as that of a single tree. So, creating a forest of such trees and

averaging them can significantly reduce the variance of the final

model.

Fight Your Having a model that does not get trained or show

convergence after certain epochs indicates that something is wrong

with the model. Quick checks like lowering the learning rate,

changes in momentum, using a different optimizer, using different

loss functions, checking model implementation, and monitoring

the progress for long enough can help a lot. One should always

try to decrease bias at the cost of variance.

You can check the following link to know more on the Bias

Variance problem: http://scott.fortmann-roe.com/docs/BiasVariance.html

Learning Curves

The learning curve is a diagnostic measure to identify the

presence of a bias-related or variance-related problem. In the

normal training test cycle, we just split the dataset into test a

train, develop a model on the train data, and apply it on test

data. To plot the learning curve, we follow a slightly different

approach. We take an increasing number of training examples,

such as 1, 2, 5, and 10, up to the entire training set and test it

on test data. When we measure the training error for partition

with an increasing number of examples, these are known as

learning curves.

In a nutshell, the learning curve shows a change in training and

validation error, as with the change in training set size. Initially,

when the training sample is 1, the model fits it well, and while

the training error is zero, the validation error is the highest. As

we increase the training samples, the data cannot fit the training

sample perfectly, so training error increases, but the validation

error decreases. To demonstrate the concept of the learning curve,

we will take the help of the dataset. Let’s look at the local

stability analysis of the 4-node star system (electricity producer is

in the center) implementing the De-central Smart Grid Control

concept. The electrical grid stability simulated dataset has four

types of variables and stabf as target

Reaction time of participant

Nominal power consumed

Coefficient proportional to price elasticity

The maximal real part of the characteristic equation root (if

positive - the system is linearly unstable)

The stability label of the system, which is the target variable

Loading Data, Pre-processing

We aim to produce a learning curve from this data. To quickly

produce the learning curve, we will take the help of the

learning_curve Scikit-learn function. This function determines cross-

validated training and test scores for different training set sizes.

The following code follows these steps:

Loading data.

Converting categorical string label to a numerical variable.

Defining training sample size as [1, 5, 10, 25, 20, 25, 50, 75]. The

first iteration will use only one sample will be used for training,

the next will use five samples, and so on.

Defining feature and target variables.

#loading data

data = pd.read_csv(‘Data_for_UCI_named.csv’)

data.head()

converting categorical to numerical

stav_int = []

for i in list(data[“stabf”].values):

if i == “unstable”:

stav_int.append(0)

else:

stav_int.append(1)

assignnumerical variable to pandas data frame

data[“stav_int”] = stav_int

defining various data fraction

train_sizes = [1, 5, 10, 25, 20, 25, 50, 75]

features =

[“tau1”,”tau2”,”tau3”,”tau4”,”p1”,”p2”,”p3”,”p4”,”g1”,”g2”,”g3”,”g4”,”stab”]

target = ‘stav_int’

Using Simple Regression

Let’s now use a simple regression model and plot the learning

curve using the following snippet:

train_sizes, train_scores, validation_scores =

learning_curve(estimator = LinearRegression(), X = data[features], y

= data[target], train_sizes = train_sizes,scoring =

‘neg_mean_squared_error’)

The following plot is the result of running the preceding script.

The gap between training error and test error narrows, as the size

of the training set increases; the bigger the gap between the two

errors, the larger is the variance. In our case, the gap is extremely

narrow, so our model does not have the variance problem.

Figure 1.9: Learning curves.

The learning curve plotted using the linear regression model high

training MSE and also represents low variance. In our case, the

training error is already high, so we have low variance and high

bias problems. Based on this, we can conclude that our model is

underfitting the data, and adding more rows is highly unlikely to

help it perform better using the current algorithm. We can try

changing the algorithm to a more complex one. Increasing the

features or moving to higher-order polynomial could also help.

Besides, we can think of decreasing regularization to increase the

flexibility of the algorithm and achieve a low-bias high-variance

solution.

Using Random Forest Regression

The following code block applies complex algorithm to check if

the variance decreases. I have applied the Random Forest

algorithm to the same dataset using the RandomForest Regressor

using the learning_curve function:

train_sizes, train_scores, validation_scores =

learning_curve(estimator = RandomForestRegressor(), X =

data[features], y = data[target], train_sizes = train_sizes, cv = 5,

scoring = ‘neg_mean_squared_error’)

The resulting learning curve is as follows:

Figure 1.10: Learning curves complex model

This is the learning curve plotted using the Random Forest model.

Now, it’s clear that both the training and test error have

decreased. It is a case of low bias and low variance. The gap

between train error and validation error is also low, so we can

conclude that the model can perform well on test data. You can

look at the entire implementation in the learning_curves.py

We have probably arrived at a better solution than before. This

model can be more complex by using a neural network like a

model. You can experiment with the more complex model in the

learning_curves.py script.

For further reference, you can check the following link:

https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.learning_curve

.html

Regularization

It’s quite clear from the previous chapter of the bias-variance

trade-off and learning curve that there is a higher chance that one

may end up with higher bias and higher variance if no measures

are taken. Regularization techniques are commonly used to deal

with overfitting, and there are several regularization techniques in

practice:

Lasso regularization

Ridge regularization

Elastic Net

Early Stopping

Drop-out

Ridge and Lasso are widely used in machine learning techniques,

and Drop-out is used widely in deep learning techniques. There

are many other regularization techniques, including DropConnect.

L1 Regularization (Lasso Regularization)

LASSO is short for Least Absolute Shrinkage and Selection

Operator. L1 regularization adds a penalty equal to the absolute

value of the coefficient and does both variable selection and

regularization to increase the predictive accuracy of the model.

Lasso regularization works by eliminating unwanted covariates and

keeping only those that improve the model’s efficiency. Before

Lasso, step-wise regression was used, but it improves the efficacy

only when some of the covariates have a strong correlation with

the outcome. However, in a certain case, step-wise regression

worsens the prediction.

Wherein feature sets . In , the subscript i represents the sample

number and the super script 1 represents the feature number for

that sample. Typically, in real-life data, each data point can have n

features. is an intercept/bias coefficient, and is the coefficient, the

liner regression model is defined as = + where represents the

feature of the data point. The following is the formula for the

Sum of Squared Error (RSS), where 0 to

And the changed function with penalty can be shown as:

Here, is the cost function, and is the regularization term. The

regularization coefficient penalizes all the parameters except

intercept and prevents overfitting. As the model’s complexity

increases, L1 regularization adds the penalty for the higher term

and decreases their importance, bringing the model toward a less

complex solution and preventing it from overfitting. A tuning

parameter, controls the strength of the L1 penalty. Here, λ is the
amount of feature selection to be done:

In the equation, when λ = 0, no parameters are eliminated. The

estimate equals to one which is found with the base model.

As λ increases, more and more coefficients are set to zero and

eliminated. If λ = ∞, all coefficients are eliminated (practically, no

one does that!)

Bias increases as λ increases.

Variance increases as λ decreases.

λ is sometimes regarded as Alpha (a).

L2 Regularization (Ridge Regularization)

L2 is another form of regularization widely used in machine

learning. L2 regularization adds a square of the magnitude of

coefficient as a penalty to the loss function. The following formula

is for the sum of the square of error. L2 regularization only

applies the regularization and does not make the variable

selection. One thing peculiar about Ridge regularization is that it

forces any coefficient to zero it. Still, with a higher λ value, it
minimizes the effect of attributes on the trained model. Here’s the

changed loss function with the L2 penalty added to the original

equation:

Elastic Elastic Net is a convex combination of Ridge and Lasso

regularizations. It emerges due to the drawback of L1

regularization, whose attribute selection is dependent on data, and

so, very unstable. The solution is to combine both L1 and L2 to

get the best of both worlds. Now, there are two parameters to

choose from: α and λ. If α = 0 ridge regularization is used and if
α = 1 for Lasso regularization, the intermediate value determines

the balance between the two.

Implementing Lasso Regression

I have applied Lasso regression on the Boston house-prices

dataset and applied the different values of λ. As we increase the
value of λ, some of the variables are ignored. There are 13

variables, namely, CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS,

RAD, TAX, PTRATIO, B, and LSTAT. I have taken the help of the

sklearn function. Lasso, which is a linear model trained with L1

before regularizer. With different values of λ as [.0001, 0.25, .5,
0.75, 1.0]. The Lasso function denoted as λ and α both the
notation are interchangeably used in literature. We can view it in

the following code block:

Run Three Lasso Regressions, Varying alphas Levels

Create a function called lasso,

def lasso(alphas):

‘’’

Takes in a list of alphas. Outputs a dataframe containing the

coefficients of lasso regressions from each alpha.

‘’’

Create an empty data frame

df = pd.DataFrame()

Create a column of feature names

df[‘Feature Name’] = names

For each alpha value in the list of alpha values,

for alpha in alphas:

Create a lasso regression with that alpha value,

lasso = Lasso(alpha=alpha)

Fit the lasso regression

lasso.fit(X, Y)

Create a column name for that alpha value

column_name = ‘ λ = %f’ % alpha

Create a column of coefficient values

df[column_name] = lasso.coef_

Return the dataframe

return df

Run the function called, Lasso

df = lasso([.0001, 0.25, .5, 0.75, 1.0])

As you can see, an increase in λ means some of the variables

are given zero importance. So, by decreasing variable importance

(or penalizing), l1 prevents model overfitting. You can run an

experiment with the script

Figure 1.11: L1 regularization with a different value of λ.

Ridge The L2 equation makes it clear that if λ = 0, no
regularization is applied. If λ is large, the model will not learn

anything or underfit. I have applied Ridge Normalization to the

Boston house price dataset. Let’s view it in the following code

block:

Create a function called lasso,

def ridge(alphas):

‘’’

Takes in a list of alphas. Outputs a dataframe containing the

coefficients of lasso regressions from each alpha.

‘’’

Create an empty data frame

df = pd.DataFrame()

Create a column of feature names

df[‘Feature Name’] = names

For each alpha value in the list of alpha values,

for alpha in alphas:

Create a lasso regression with that alpha value,

Ridge = Ridge(alpha=alpha)

Fit the lasso regression

Ridge.fit(X, Y)

Create a column name for that alpha value

column_name = ‘ λ = %f’ % alpha

Create a column of coefficient values

df[column_name] = Ridge.coef_

Return the datafram

return df

Run the function called, Lasso

df = ridge([.0001, 25, 50, 75, 100])

As I increased the value of lambda from 0.0001 to 100, you can

see that the penalization gradually increased. L2 increases penalty

on attributes and prevents the model from overfitting. You can

run an experiment with the l2_regularization.py script. We can see

it in the following image:

Figure 1.12: L2 Regularization with a different value of λ.

Implementing ElasticNet

I applied ElasticNet on the same Boston house prices dataset but

with different values of λ Setting α = 0.5. The following is the
function of Elastic net optimizations. It is similar to the previous

implementations and takes an additional l1_ratio parameter, which

is to balance between l1 and l2 regularization:

Create a function called Elastic,

def elastic(alphas):

‘’’

Takes in a list of alphas. Outputs a dataframe containing the

coefficients of lasso regressions from each alpha.

‘’’

Create an empty data frame

df = pd.DataFrame()

Create a column of feature names

df[‘Feature Name’] = names

For each alpha value in the list of alpha values,

for alpha in alphas:

Create a lasso regression with that alpha value,

Ridge = ElasticNet(alpha=alpha)

Fit the lasso regression

Ridge.fit(X, Y)

Create a column name for that alpha value

column_name = ‘ λ = %f’ % alpha

Create a column of coefficient values

df[column_name] = Ridge.coef_

Return the datafram

return df

Run the function called, Lasso

df = elastic([.0001, 0.25, 0.50, 0.75, 1.00])

I got the best of both worlds, as shown in the following plot. For

some attributes, it applies penalties with an increasing value of λ,
which is the effect of L2 regularization. Some attributes like NDX

and RX are almost nullified, which is the effect of L1

regularization:

Figure 1.13: ElasticNet regularization – The effect of different value of

λ.

The main question is how to select the optimal value of variables

a and λ in Lasso, Ridge, or ElasticNet regression. Methods like

using cross-validation and Information-criteria based model

selection are used to do this, but the details of these methods

are out of the scope of this book. Techniques like Early Stopping

and DropOut are widely used in the field of deep learning. We

will discuss Early Stopping and DropOut in great detail in

chapters related to CNN and RNN later in this book.

You can check the following links for reference:

https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html

Elastic https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

http://yann.lecun.com/exdb/publis/pdf/wan-icml-13.pdf

https://arxiv.org/abs/1605.06465

Training and Inference

There is a great correlation between how a child learns and how

a machine learns. Machine learning techniques are highly

dominated by supervised learning models like Random Forest,

logistic regression, Gradient Boosted Machine perceptron model,

and other architecture like Convolution Network Network and

Long-Short Term Memory

Figure 1.14: A flow diagram to dictate how a model is built and

used in the inference pipeline.

Inference is a process where capabilities learned during deep

learning training are put to work. Generally, the desired training to

inference ratio is 70:30, but this ratio does not hold to be true

for all sizes of the dataset; so, we must consider different ratios

for different data sizes. As the size of the training data increases,

the fraction of test data is decreased. The most important thing

to remember is in the split; there should not be a distribution

difference between the inference and training data.

Around 90% of machine learning models do not end up in

production due to their efficiency and productivity. The production

efficacy of the model can be optimized to achieve the maximum

number of inference with low energy consumption in the

production environment. Several techniques can be used to ensure

the production viability of the model. All major frameworks like

Tensorflow, Theano, PyTorch, and MxNet use dynamic or static

graphs internally to optimize the overall training process. However

the network graph is formed for training is not optimized for

inferencing. There is a great need to improve the speed and

efficiency of inferencing. We all know of Netflix’s collaborative

filtering competition. On June 26, 2009, the team named BellKor’s

Pragmatic Chaos achieved a 10.05% improvement over the next

best team and won the competition. However, very few people

know about what happened after—the model never went to

production owing to its complexity. It was an ensemble model,

and Netflix could not scale it. Keeping this experience in mind, we

must think of model scalability and inferencing efficiency from the

beginning of the experimentation.

Software-based Accelerated Inferring

Software-based inferencing can be done using TensorRT by freezing

the graph:

TensorRT was released by Nvidia that optimizes the neural

network model. TensorRT is used by many companies in their

production codes.

Figure 1.15: Showing how TensorRT works and converts trained model

into inference ready engine.

TensorRT performs multiple series of predefined operations to

optimize the neural network model. Many a time, models can

have multiple outputs, which are often made to regularize and

stabilize the model. Multiple outputs in the neural network also

help learn very deep models.

Convolutional bias and relu are fused to form one layer.

Parallel layers with the same operations and similar parameters

are merged.

Backpropagation parameters are removed.

Original FP - 32 (double-precision)-based Model is changed to

single-precision (FP - 16 and INT - 8) based model.

These operations do not change the overall accuracy of the model

to a great extent, and the model is only reorganized to make it

faster. You can refer to the image given at This image illustrates

how TensorRT optimizes Google net or Inception/ GoogLeNet

module.

TensorRT takes a model graph in ONNX format and generates a

TensorRT-optimized model. ONNX is an open format to represent

deep learning models. With ONNX, AI developers can easily move

models between state-of-the-art tools and choose the combination

best suitable for them.

Freezing the TensorFlow uses this technique for faster inference. In

the original graph generated by TensorFlow, various parameters are

related to back-propagation, updates of weights, the queuing and

decoding of inputs, and information related to checkpoints. These

are no longer required during inferencing. Sometimes, it has been

observed that the model, which is of size in a few GBs,

diminished to a size in MBs after freezing the graph.

Hardware-based Accelerated Inferencing

With the advent of an edge computing device like self-driving

vehicles and personal assistance like Alexa, Google Home, and

Siri, it is essential that our model be capable of running on edge

nodes. Generally, the edge node is the device with low RAM and

compute capacity. The model must be small, fast, and energy-

efficient to be accommodated into this device. Hardware-based

inferencing device is already available in the market to help

achieve this. Some of the computing devices optimized for

inferencing are:

Nvidia Turing and Jetson ecosystem

Movidius 2450 by Intel

Kirin 970 (Huawei)

Qualcomm 660

Some of the required properties needed in such inferencing

devices are as follows:

Low power consumption

Low cost (many such devices will be required; one at each edge)

Ease of deployment

Inference speed (Most I. M. P.!)

An inference can be made on the following type of the device:

CPU

GPU

FPGA

DPU

ASIC

The list is in decreasing order of flexibility and increasing order of

inference efficiency. These devices work by using various

techniques like fusing layers, memory optimization, and efficient

allocation.

The Three Learning Principles

There are certain principles, knowing which can help avoid far-

sighted issues, although they do not help in the actual

implementation. These principles are not related to ML in general,

but learning about them helps us understand machine learning

better.

Model related concepts

Occam’s It’s a common thing in life “simpler is better.” The

Occam’s Razor theory says, An experiment should be made as

simple as possible but no In a common terms, one should slice

the data with a razor until it provides a fully logical explanation.

The simple model that fits the data is also the most plausible.

There are questions to be answered:

What does it mean for a model to be simple?

How do we know it is a simple model?

What does it mean model to be simple?

The simplicity of a model can be measured in the following ways:

By measuring the complexity of a single hypothesis (we often refer

to this as

By measuring the complexity of an entire class of the hypotheses

(we refer to this as a group of H)

The complexity of h can be measured as follows:

If one says 70th order polynomial or 100th order polynomial,

which one is more complex?

Minimum Description Length in minimum bits can be explained.

It can be better explained by Kolmogorov complexity, but MDL is

a friendlier one because it isn’t affected by compute capability and

such.

Two methods can be used to measure the complexity of a group

of hypotheses

Entropy can be used to measure the complexity of the group.

The Vapnik–Chervonenkis dimension can be used. It looks at the

hypothesis and gives one number that describes the diversity of

the group.

Sometimes, we think that the data is complex, but taking the

same data in a higher dimension can make it simpler to deal

with. This is the working principle behind support vector

machines. It is better to have a simple fever hypothesis than a

complex one. Occam’s Razor silently says that we must

understand whatever we do, as blindly picking a complex

hypothesis may make our analysis vulnerable to overfitting. Let’s

take an example of the stock market oracle to understand the

complexity of the algorithm. Let’s say you get daily emails with a

prediction of whether the share market will go up or down. You

received this prediction for the next four days, and the received

predictions were right. On the sixth day, you get the mail that

says give $50 for the next prediction.

There is a higher chance that you end up paying, but it’s

important to understand how this is happening. So the oracle has

figured out a complex algorithm to predict share market, or

something else is happening. In reality, the person sending this

email has drafted 32 emails and sent them to 32 people. Half of

the emails state that the market will go down, and the other half

state that it will rise. At the end of the day, they have 16 people

to whom they sent an email that turned out to be correct. On

the second day, he repeats the experiment with 16 people, and

everyday people get reduced, and on the sixth day, only one

person is left who has received all the predictions correctly. On

this day, that person gets the email asking for $50. This is what

happened behind the scene. The person sending the emails saw

that the prediction ability of this algorithm is great because that

person does not know about its failures. There is one hypothesis,

and it was totally correct. In reality, there are 32 hypotheses, so

the prediction capability of this group is approximately 1/32*

100%, so this hypotheses set is useless.

Data related Concepts

Sampling bias occurs when data collection is done in a biased

way, as the learning will also produce biased outcomes. We

should always think of test data/real-life data distribution while

collecting training data. It often happens that trained data

performs poorly on test data due to distribution-related issues.

Sometimes, this distribution can be corrected by fine-tuning a

small amount of data with a similar distribution as test data. Let’s

say a personal assistant, let’s assume Alexa, was trained using an

American accent. When anyone says Alexa, it wakes up and

follows the voice command. Will this system work with the same

efficiency for a person speaking in an Indian accent? I doubt. To

correct this distribution, the model should be retrained or may be

fine-tuned on Indian-accent related data. The following figure

shows the meaning of the difference in distribution between Train

and Test data:

Figure 1.16: The meaning of the difference in distribution between

Train and Test data.

Let’s take one more example to demonstrate how data bias can

affect the final model. In an Indian election between candidate X

and Y, one of the news channels conducted an online poll after

the elections to predict who will win before the results were out.

The news channel got thousands of replies and the channel

declared that X won over Y based on the statistical analysis.

When the actual results were declared, it was flipped and

candidate Y won with a large margin. Now, where did things go

wrong? They went wrong with the online poll. The age group

highly influenced the result. The majority of the people who voted

in the online poll were youngsters who favored X over Y, which

reflected in the results. But this poll does not cover the majority

of the population including older adults, those who don’t have

access to the Internet, or others who favored Y over X. This is an

example of how a change in the distribution of train and test

data can affect predictions.

Data snooping is the statistical inference that researchers decide

after looking at the data. It is also known as data finishing, data

dredging, p-hacking, and data butchery. If you torture your data

long enough, it will confess anything - Ronald Yes, the model will

confess anything, but it won’t be able to predict correctly on test

data. For example, let’s say we have the following data:

Figure 1.17: Example data distribution to understand data snooping.

Ideally, your equation should be: 1 + + + + + By the kick of

elementary math, you already knew that the only part that would

be useful is + By doing this, you get good accuracy on the train

data, but this model will never generalize because it is learning

the data in a biased manner. Unintentional data-snooping can be

prevented by performing certain checks:

The main idea is not to develop an algorithm by looking at every

point of the data but by looking at the pattern/properties of the

data.

Don’t restrict your algorithm based on the data point you

observed. If you do so, your algorithm will perform worst on the

test data.

Before collecting or using data, think about the hypothesis you

will use. The hypothesis should be chosen considering the

characteristics of the data, so a hypothesis that performed well in

the past with similar data characteristics should be selected first

for experimentation.

Always divide your dataset into random Train, Validation, and Test

partitions. The training sample is used for Training, and the

validation sample is used for checking the generalization capability

of the hypothesis on the validation while training is in progress. A

validation sample is also used for early stopping. Early stopping is

one of the techniques to prevent overfitting. After the Training

sample is completed, the resultant hypothesis is tested on the test

dataset. If Train, Test and validation sample belong to the same

distribution, the hypothesis performing well on the validation

sample is expected to perform equally well on the test sample.

Conclusion

This chapter provided the base of what we will be building upon

throughout this book. This chapter covered the very first and the

simplest perceptron model that works well on our example data.

We also went through some of the basic methods to identify

problem with models, like bias-variance tuning and methods to

generalize the model to unknown data using regularization. We

have also seen what the possible matrices can be to gauge the

progress and quality of the model. This chapter is very useful and

will always be at the core of any machine learning or deep

learning workflow.

In the next chapter, we will learn text processing techniques.

CHAPTER 2

Text Processing Techniques

This chapter starts with making you aware of the challenges

related to Natural Language Processing This chapter helps you

understand why dealing with NLP is difficult by providing various

examples, and it covers methods to get data either by web

scraping or parsing data from different formats. We will also

explore basic text processing techniques like Stemming and

Lemmatization, to convert the inflected token to stem and help

decrease vocabulary size. We will tokenize and compare sentences

with Spacy and Natural Language Toolkit libraries in the recipe

related to tokenization. One of the most important recipes of the

book is covered in this chapter, which is an introduction to

PyTorch. The PyTorch-related recipe will help you implement a

basic neural network model on your own, and recipe related to

TorchText will help you with hand on text manipulation and

processing it with PyTorch. The last recipe is related to visualizing

our model progress by plotting scalar, images, text, and

embedding produced during training, helping track the learning

progress.

Structure

In this chapter, we will cover the following recipes:

Understanding the language problem

Introduction to data retrieval and processing

Understanding stemming

Understanding lemmatization

Understanding tokenization

Getting familiarized with PyTorch

Using TorchText

Visualizing using TensorBoard

Objective

This chapter will help readers learn about common text processing

techniques used in the natural language processing pipelines. This

chapter covers the fundamentals of the workings of stemming,

canonicalization, and tokenization. Additionally, it explores topics

like PyTorch essential, understanding PyTorch text for text

processing, and using TensorBoard with PyTorch to visualize the

training process, embedding, and network graph.

Pre-requisites

I have provided some of the examples through code, and the

code for this chapter is in the ch2 folder in the GitHub repository

To understand this chapter, you require basic knowledge of the

following Python packages:

PyTorch

Numpy

TensorFlow_gpu

Requests

NLTK

Scipy

Spacy

PyTorchvision

BeautifulSoup4

TensorboardX

TensorFlow

You can install these requirements by installing all the packages

listed in requirements.txt by simply issuing pip install -r

Understanding the Language Problem

Language is the mechanism for connecting with those around us.

It evolves constantly, and it takes many years for humans to

understand it.

There’s a paradox; language, for us, is something we understand,

while language, for the machine, is purely mathematical. Human

language and mathematics are not evolved according to each

other, so finding a straight line between them is difficult. Humans

would take a considerable amount of time if they are asked to

calculate 100 order polynomial, but a machine would do it easily.

On the other side, machines are less intelligent than kids in

understanding and generalizing language, and NLP bridges this

gap:

“In NLP, No Rule applies the indefinite rule applies”

Understanding language is difficult, and there are around 6,500

languages in the world. Each language has its grammar, syntax,

and semantics, so there are certain known challenges in

understanding language. I have discussed a few challenges here to

give you a sense of challenges we will face ahead of this chapter.

The following are the complexities involved in understanding the

nuances of natural language. Details regarding these will be

discussed in the next section:

Contextual When a given word is used in different contexts and

carries a different meaning in each case, it is also known as

polysemy.

Sentence I went to the bank to withdraw money.

Sentence I saw an alligator at the bank.

Here, the meaning of the bank is different in both the sentences.

≠ When methods like word2vec or glove generates the word

vector, the context of the word is not considered, so vector both

the word will be = But when contextual embedding is used, a

bank in both cases will have a different meaning, so the vector

for the same word in different sentences will be different.

Pronoun It is related to identifying a subject or object with

respect to the given verb.

children stole the guns. They were later

Here, the pronoun They may refer children or guns. To solve this

problem, we may use techniques called anaphora It is a problem

to identify how the noun or pronoun refers to the verb.

Ambiguity in proposition Before we go forward, let me give you

an example:

“The policeman saw the thief with the telescope.”

It is difficult to find whether the past participle (with the

telescope) is attached to the noun phrase (the when the

interpreted reader goes as the thief has a telescope and is seen

the policeman. On the other hand, it could be attached to the

verb phrase (see); so, the policeman had a telescope, an

instrument for seeing the thief. At the same time, relative clause

attachment connected at least two phrases that composed a

sentence.

Humor/sarcasm Humor and sarcasm are very difficult for the

machine to identify. The main reason is the lack of diversity and

the training data not having enough coverage. Understanding

humor requires a fine sense of language as well as attention.

Present machine learning techniques lack both, so it is difficult to

make a system that can identify humor or sarcasm.

Native language-related Well, this is a huge challenge when it

comes to classifying tweets or sentiments. Generally, the available

training dataset belongs to one distribution, whereas the test data

belongs to another distribution. The way a Native American writes

English is very different than the writings of a native Indian. It is

one of the spots where a lot of research is required so that the

model is generalized so well that retraining or fine-tuning is not

required.

Long-range Machine learning techniques are not well suited for

capturing long-range dependencies.

Nvidia’s platform will allow automakers to integrate full self-driving

autopilot capabilities, including lane detection, lane change, lane splits,

signboard detection, and emergency response system into will also help

them easily deploy intelligent cockpit assistance systems to automakers.

Here, the word It refers to It is difficult for many algorithms to

figure out this relation; this problem is also known as named

entity disambiguation. Due to these problems, natural language

processing and natural language understanding are still difficult

tasks to accomplish.

Speech Nowadays, many personal assistants like Alexa, Google

Home, and Siri are facing challenges related to speech

recognition. Let’s say your assistant is trained on a Native

American accent, and it fails in the Indian market. It essentially

requires retraining or fine-tuning. Fine-tuning will work if the

device was trained on a Native American accent and needed to be

used in India, but it will not work if such a device needs to be

used in China with the Chinese Language, the device would

require retraining using a new dataset. There are many challenges

in speech recognition, like noise, channel variability, multiple

speakers, speaking style, and homophones. We will discuss these

challenges in Chapter Techniques and Advance Framework of

Speech Processing.

Realeyes

Realize

Real lies

All the preceding, when spoken, are perceived as similar, which

makes it difficult to differentiate between them. This example is

from a tweet by Christopher Syre Smith (an american rapper).

Based on difficulty, NLP problems can be broadly categorized as

follows:

Easy or mostly Spam detection, part of speech tagging, named

entity recognition

Intermediate or making good Sentiment analysis, machine

translation, sentence/query parsing or natural language

understanding, word sense disambiguation, information translation

- converting unstructured data to structured data.

Hard or still need a lot of Text summarization, machine dialogue

system

This book will cover many of these tasks, and we will cover tasks

that are easy, medium, and hard. In the upcoming chapters, we

will design models that are state-of-the-art or very close to it. Stay

tuned!

You can visit to the following link: to understand the current trend

and challenges in NLP

Natural Language Processing: State of The Art, Current Trends and

Challenges: https://arxiv.org/pdf/1708.05148.pdf

Introduction to Data Retrieval and Processing

Modern algorithms are data-hungry. A huge amount of data is

required to generalize the given task, and such labeled data can

be gathered from two sources:

Data made and published by someone

Data to be gathered yourself

The first option is very lucrative but limited, as labeled data

cannot be available for each learning task. Sometimes, available

data is not useful due to the difference in the distribution of train

and test data. It is related to the generalization problem we

discussed in Chapter 1, Understanding the Basics of Learning One

thing can be done to have better accuracy on the test data. Initial

training is done with the labeled data we received from datasets

that are already available, and fine-tuning of such a model can be

done using domain-related data.

Let’s take an example to make you aware of the distribution

difference between the train and test data. Let’s say a carmaker is

interested in analyzing the sentiments of a customer who comes

to their service centers. Since a majority of cars are not sold

online, there is no proper feedback loop defined, so historical data

is less or not available. In this condition, one may take Amazon

sentiment analysis data. Still, the model’s distribution is different

from the test data, and this model will perform poorly on the

car’s service sentiment data. In this case, a model can be trained

on the Amazon sentiment analysis data and fine-tuned on a small

amount of the available car’s service sentiment analysis to perform

better.

We need to think how to get such custom data. It can be

gathered from the following sources:

Scrapping the web page

Extracting data from XML and JSON

Web scraping is the process of extracting data from websites. Web

scrapers are the program used to collect specific information from

the web pages, and scraping can be done when you know that

data is available on web pages. Different websites have different

structures, so one scrapper script cannot work for all websites; we

need different scrappers for different websites. A web scrapper

performs specific tasks to get the desired information:

It sends a get request to the specified URL.

Upon receiving the page, it parses the Document Object Model

(DOM) of the HTML and extracts the required information as per

the tag UD, class, or property targeted.

DOM is a cross-platform and language-independent application

programming interface. A scoring to DOM file formats like HTML,

XHTML, or XML has a tree structure. In this tree structure, each

node is an object representing a part of the document. The DOM

model represents a document with a logical tree.

Scrapping the Web Page

Let’s look at an example to understand how to use scrappers.

Assume that I want to build a scraper that scraps comments and

corresponding star ratings related to a particular vehicle. I will be

scrapping comments from Let’s say I am scrapping information

related to Mahindra Marazzo, which is located at Python has

many scrapping packages available, including Scrappy,

BeautifulSoup, and Selenium. I will be using BeautifulSoup for this

example. If you inspect the HTML elements of this web page

using your favorite browser, you will see the following HTML

elements. Inspect elements can be opened by selecting an option

after right-clicking on any part of the HTML or by pressing the

Ctrl + Shift key combination.

The following is the source code of the page, in particular to

comments. This source code is taken from

id=”userReviewListing”>

style=”margin-top: 20px;”>

style=”font-size: 14px; font-weight: bold;” href=”/mahindra-

cars/marazzo/userreviews/59854/” data-

cwtccat=”ReviewsListingsPage” data-cwtcact=”TitleClick” data-

cwtclbl=”modelid=1098|source=1”>Worst car

class=”text-grey” style=”margin-top: 3px;”>class=”rating-sprite one-

rating”> by sagar, 2 months ago, > 0 Comments

style=”margin-top: 10px;”>Just a face lift of renault lodgy

nothing else. No value for money, quite expensive for 16.5L. I

bought M8 variant which has started making noises……

href=”/mahindra-cars/marazzo/userreviews/59854/” data-

cwtccat=”ReviewsListingsPage” data-cwtcact=”ReadMoreClick”

data-cwtclbl=”modelid=1098|source=1”>read complete review

Out of the entire page, I have only shown the HTML

elements that have user review-related information. To extract

this information, we must target the DIV with an ID equal to

Under this DIV, each user review is organized as a nested

DIV, and there are two SPAN elements under each inner DIV:

one has star information, and the second has user

Here’s an example of scripts to extract comments from the

page:

Getting page Content

page = requests.get(‘https://www.carwale.com/mahindra-

cars/marazzo/userreviews/’, verify=False)

contents = page.content

parsing DOM using Soup

soup = BeautifulSoup(contents, ‘html.parser’)

getting all data under userReviewListing

mydivs = soup.findAll(id=”userReviewListing”)

getting All DIV under userReviewListing

for i in mydivs:

for j in i.find_all(“div”): # Getting individual DIV under

previous DIV

try:

m, n = j.find_all(“span”) # Getting SPAN under DIV One

span is having rating info one SPAN is full Comment

pprint({“Rating”: m.get(‘class’, []), “Full_Comment”: n.text}) #

Making Dict for Rating and Full Text

except:

“”

After running the code from you will receive the following

dictionary as an output for each user review. One of the

output is shown as follows:

{‘Full_Comment’: ‘1. I am not buying it but i am thinking to

buy this car\n’ ‘2. Driving experience is Awesome i personally

drive this ‘ ‘car. Car are awesome in all…’, ‘Rating’: [‘rating-

sprite’, ‘three-rating’]}

This code is not complete yet, and we can improve it in

many ways:

The existing code is not scrapping full comments and returns

only the first few words. We can improve the code to extract

full comments.

We can have improvement logic that can handle the

pagination of user reviews.

By the time you try the preceding code, the website’s

structure might have changed, and possibly the code might

not run. So, instead of following the code, try to understand

how to select HTML tags using Python and extract the

information content later.

Parsing Data from XML and JSON Format

JSON and XML are the standard formats for web services

and data storage. JSON has a dictionary-like format and can

have nested elements, while XML is a markup language that

encodes documents in a format that is both human-and

machine-readable. All higher-level languages are equipped with

an inbuilt parser for JSON and XML. Python also has

complete support for XML and JSON. One can use the XML

or JSON package in Python to deal with XML formatted or

JSON formatted files.

It’s always not as simple as in the preceding example. There

are many genuine reasons for the web developer not wanting

to allow you to scrap the website. Some of the reasons are

as follows:

No one wants their data to be used without their permission.

Web scrapper on multiple CPU threads can throw millions of

requests per second and makes the server unusable for other

users. Besides, the original developer needs to pay for

outbound bandwidth consumed by scrappers.

Web developers often use some of these techniques to not

allow web scrappers:

Password-based blocking

Captcha implantation

Server-side implementing leeches protection

IP based blocking

All these techniques can be fully or partially bypassed. There

are good frameworks available to bypass these blocking

mechanisms.

Understanding Stemming

Different forms of the word often communicate the same

meaning. There is no difference if we search for Shirt or

Shirts. Syntactic differences between different word forms are

known as which are often found to be blamed for the

problem in query understanding. In NLP, stemming is the

technique of replacing the derived or inflected word with its

base form stem. Algorithms for stemming are practiced since

1960. Stemming-related algorithms were used for search

engines, where such algorithms convert the search word to its

base form. In the search, the entered word is searched along

with its stem from the word, treating all its modified forms

as synonyms.

For example, a stemming algorithm should convert the words

fished, fishing, and fisher to their base form fish. There are

various implementations of the stemming algorithm, like

snowball and porter stemmer. These algorithms operate on a

set of rules:

The production This is a reverse lookup-based technique. First

of all, various modifications are generated; for example, for

the word “run,” all its modifications are generated like “ran,”

“running,” “runs,” and “runny.” Then, reverse lookup is

performed on all these modifications to get the base word

“run.”

Suffix stripping In these techniques, unlike the production

techniques, a suffix keeping algorithm with a set of rules is

employed instead of keeping all the modification and

bootstrapping. Common rules can be words ending with ed,

ing, or ly; such suffixes are removed to bring the words back

to their base form. Though it is a simple algorithm, it does

not do well in practice, and it does not affect words like run

and its past participle for ran. It is required to note that all

languages do not use suffix and prefixes.

Let’s take another example of the Italian language:

Mandargi = Mandare + gli means “to send him”

Mandarglielo = Mandare + gli + lo means “to send it to

him”

In Portuguese, hyphen (-) is used to separate the base form

from the suffix, so it is easy to deal with the Portuguese

language in this case. After many years of research, there is

nothing like a versatile stemming algorithm. Each language

has its stemming algorithm operating with a set of rules.

Understanding Snowball Algorithm

We will discuss the most-used stemming technique—the

snowball algorithm. It operates on a certain rule created after

closely studying the pattern of suffixes and replacement to be

considered to bring it to the base form. The following

explanation aligns with the snowball explanation given at

A, E, I, O, and U are vowels, and all other characters are

consonants. A vowel is designated by V, and a consonant is

designated by C. Based on this, any word can be represented

in these four basic forms:

V ……. V: Starting with a vowel and ending with a vowel

C ……. C: Starting with a consonant and ending with a

consonant

C ……. V: Starting with a consonant and ending with a vowel

V ……. C: Starting with a vowel and ending with a consonant

It can be shortly represented as which represents all word

that start either with a vowel or consonant. It can have a VC

repeating pattern and end with a vowel or consonant.

consonant.

consonant. consonant. consonant. consonant.

consonant. consonant. consonant.

consonant. consonant.

consonant.

Table 2.1

Remember that the following short-forms will help you

understand the algorithm better:

The stem ends with S (and similarly for the other letters, for

example, m).

The stem contains a vowel.

The stem ends with a double consonant (for example, -TT, -

SS).

The stem ends CVC, where the second c is not W, X or Y

(for example, -WIL, -HOP).

The following are some of the rules that say its base form

will replace the suffix. These rules repeatedly apply until no

substitution is possible. In Step - certain rules are defined to

change some of the suffixes to their base forms:

forms:

forms: forms: forms: forms: forms: forms: forms: forms:

forms: forms: forms: forms: forms:

Table 2.2

The rules defined in Step – 1B are applied in suffix reduction,

in combination with the preceding short-forms and VC terms:

terms:

terms: terms: terms: terms: terms: terms:

Table 2.3

If 1B – 2 or 1B – 3 is successful, the following replacement

is applied after removing a suffix.

suffix.

suffix. suffix. suffix.

suffix. suffix. suffix.

suffix. suffix. suffix.

suffix. suffix. suffix.

suffix. suffix. suffix.

Table 2.4

Step 1C is the rule to convert words with the character ‘y’ at

the end:

end:

end: end: end: end: end: end:

Table 2.5

It is all about the entire algorithm following these steps; one

can design a production-ready stemmer. Various steamers are

present in the NLTK package. In chapter Understanding

Lemmatization, we will test how a particular word is stemmed

using different stemming algorithms.

Several other techniques are used for stemming, like

stochastic algorithms, hybrid approaches, matching algorithms,

and affix stemmers. Let’s look at them in brief:

Stochastic A stochastic algorithm is based on probabilistic

models, which are usually trained on the pair of infected form

and its stem token. Such a model internally represents

complex language rules. After training, when a word is given

to such a model, it will turn it to its base form. Going a

step ahead, such an algorithm can be trained considering the

parts of speech and the context of the word, in addition to

the original word.

Affix In linguistics, ‘affix’ means both suffix and prefix. Affix

stemmers work by removing both and suffixes and prefixes to

convert the token to stem. For example, the word indefinitely

will be converted to its stem definitely.

Hybrid The hybrid approach uses many combinations of the

preceding approaches. Typically, hybrid approaches operate

using a set of rules that call any of the preceding methods.

You can refer to the following links for further understanding

on stemming:

Snowball algorithm:

Affix stemming: http://www.aclweb.org/anthology/P/P09/P09-

1017.pdf

Understanding Lemmatization

In lemmatization, the root word is called the lemma. The

main difference between Stemming and Lemmatization is that

lemmatization takes into consideration the context of the

word, while stemming does not. Stemming, by default,

operates on the suffix and does not consider the removal of

the prefix. Stemming just removes a few characters and often

ends up with the incorrect meaning.

Stemming is popular nowadays, and lemmatization is of

lesser importance. These two algorithms were of great

importance when we used to employ vectorization techniques

based on TF-IDF and the co-occurrence matrix. With a large

vocabulary, these techniques are given unnecessary larger

sparse matrix. Such a matrix with a million * million

elements is very difficult to accommodate into the main

memory.

The Stemming and Lemmatization algorithm is still under

research and not close to perfect. The following example uses

stemmers, and lemmatization functions form NLTK. NLTK has

various types of steamers, like Lancaster, Porter, and Snowball.

The following code tests a different type of Steamers and

Lemmatizer on the same set of tokens:

lancaster = nltk.stem.lancaster.LancasterStemmer()

porter = nltk.stem.porter.PorterStemmer()

snowball = nltk.stem.snowball.EnglishStemmer()

WordNetLemmatizer = nltk.stem.WordNetLemmatizer()

def differnt_stemmars_and_lemmatizer(word):

print(“Word : “, word)

print(“Lancaster Stemmer : “, lancaster.stem(word))

print(“Porter Stemmer : “, porter.stem(word))

print(“Snowball Stemmer : “, snowball.stem(word))

print(“Snowball Lemmatizer : “,

WordNetLemmatizer.lemmatize(word))

word_list = [“maximum”, “cats”, “seventy-one”, “cacti”, “geese”,

“better”, “Agreed”, “Plastered”, “Motoring”]

The following table of results shows a comparison between

the different types of Steamers and

Table 2.6

As the preceding table illustrates, the Lancaster Stemmer is

more aggressive, while porter and snowball produce similar

results. WordNetLemmatizer does not produce any change and

give the same word as the result. You may reproduce or

experiment with different stemmers and lemmatization

functions from NLTK by running the stemming_lemmatize.py

script. In addition, NLTK has a stemming algorithm for other

languages like while Isri is the stemmer for Arabic, and

Cistem is the stemmer for German.

Things have changed with the invention of character-based

embeddings like FastText or Elmo embedding. The

embeddings of the word fish and its forms like fishing, fisher,

fished will be closely placed in an n-dimensional space. It

also means that cosine distance between the vectors of all

these words will be toward minimum. So, modern algorithm

remains largely unaffected by the modified words.

The advantage of Stemming and Lemmatization is that it

reduces the vocabulary size and makes tasks memory-efficient.

Also, it avoids unnecessary similar words and enables faster

convergence.

Just like NLTK, Spacy has support for lemmatization. You can

experiment with Spacy lemmatization tools; usage document

for the same is described at

Understanding Tokenization

To the computer, any string is a continuous memory

allocation with some encoding. The process of separating

such string chunks into linguistically significant and

methodologically useful units like words or sentences is called

In English, words are separated by spaces, but all individual

words do not constitute a linguistically significant token. For

example, the words American Express make up the name of a

company, and separating these two words into American and

Express while tokenizing does not carry any meaning.

Standard word tokenizers are made up of some of the rules,

like separating by white space. Building a tokenizer seems

easy, but it is a challenging yet most interesting task. Care

must be taken while performing this task because any

mistakes propagate to your entire pipeline. Tokenization is

challenging in the biological domain, as many words are

multi-word, and hyphen and slash are often found in a single

token.

There can be two levels of tokenization, namely:

Low-level which can be considered as tokenizing based on in-

between spaces or by applying some additional rules

High-level tokenization is regrouping words and restoring the

linguistic meaning.

The tokenization process can have the following steps (mostly

rule-based):

Tokenization by spaces

Handling hyphenated words, for example, seventy-one should

be one token

Handling abbreviations, for example, in Dr., the “.” should not

be treated as a full stop.

Numeric and special numeric formats should not be broken

Dates with hyphen and slash

Phone number with bracket or hyphen

Email IDs and URLs

Sentence tokenization also works on a similar set of rules.

We won’t go into details, as we have a readymade tool with

the maximum possible accuracy. Tokenizers are being

researched for years, but the accuracy is still not up to the

mark. In the following paragraphs, you will see an example

where I have applied a sentence as well as a word tokenizer

using NLTK.

With the same paragraph, I have applied sentence as well as

word tokenizer using Spacy, an open-source library for

advance NLP written in Cython and Python programming

languages. The following sentences are taken from Town

Geology by Charles Kingsley, an openly available book from

the Gutenberg project.

Using NLTK Tokenizer

Sentence Thus, and I believe thus only, can we explain the

facts connected with these boulder pebbles. WORDS: [‘Thus’,

‘, ‘, ‘and’, ‘I’, ‘believe’, ‘thus’, ‘only’, ‘, ‘, ‘can’, ‘we’, ‘explain’,

‘the’, ‘facts’, ‘connected’, ‘with’, ‘these’, ‘boulder’, ‘pebbles’, ‘.’]

Sentence No agent known on earth can have stuck them in

the clay, save ice, which is known to do so still elsewhere.

WORDS: [‘No’, ‘agent’, ‘known’, ‘on’, ‘earth’, ‘can’, ‘have’,

‘stuck’, ‘them’, ‘in’, ‘the’, ‘clay’, ‘, ‘, ‘save’, ‘ice’, ‘, ‘, ‘which’, ‘is’,

‘known’, ‘to’, ‘do’, ‘so’, ‘still’, ‘elsewhere’, ‘.’]

Sentence No known agent can have scratched them as they

are scratched, save ice, which is known to do so still

elsewhere. WORDS: [‘No’, ‘known’, ‘agent’, ‘can’, ‘have’,

‘scratched’, ‘them’, ‘as’, ‘they’, ‘are’, ‘scratched’, ‘, ‘, ‘save’, ‘ice’,

‘, ‘, ‘which’, ‘is’, ‘known’, ‘to’, ‘do’, ‘so’, ‘still’, ‘elsewhere’, ‘.’]

Using Spacy Tokenizer

Sentence Thus, and I believe thus only, can we explain the

facts connected with these boulder pebbles. WORDS: [‘Thus’,

‘, ‘, ‘and’, ‘I’, ‘believe’, ‘thus’, ‘only’, ‘, ‘, ‘can’, ‘we’, ‘explain’,

‘the’, ‘facts’, ‘connected’, ‘with’, ‘these’, ‘boulder’, ‘pebbles’, ‘.’, ‘

‘]

Sentence No agent known on earth can have stuck them in

the clay, save ice, which is known to do so still elsewhere.

WORDS: [‘No’, ‘agent’, ‘known’, ‘on’, ‘earth’, ‘can’, ‘have’,

‘stuck’, ‘them’, ‘in’, ‘the’, ‘clay’, ‘, ‘, ‘save’, ‘ice’, ‘, ‘, ‘which’, ‘is’,

‘known’, ‘to’, ‘do’, ‘so’, ‘still’, ‘elsewhere’, ‘.’]

Sentence No known agent can have scratched them as they

are scratched, save ice, which is known to do so still

elsewhere. WORDS: [‘No’, ‘known’, ‘agent’, ‘can’, ‘have’,

‘scratched’, ‘them’, ‘as’, ‘they’, ‘are’, ‘scratched’, ‘, ‘, ‘save’, ‘ ‘,

‘ice’, ‘, ‘, ‘which’, ‘is’, ‘known’, ‘to’, ‘do’, ‘so’, ‘still’, ‘elsewhere’,

‘.’]

Sentence and word tokenization performed using NLTK and

Spacy have a significant difference, and each tokenizer is

making some or the other mistake. You may try with more

complex text, including a web URL and the mail address, to

know about the mistakes made by tokenizers. However, one

would require custom tokenizers for a custom domain, for

example, tokenizers required in the financial domain and life

science. These are generalized tokenizers, but custom

tokenizers are often made for the domain of application. For

example, the medical domain requires identifying the complex

multiword disease name as one token. Such tokenizers are

made using NLP techniques, and Named Entity Resolution is

mostly used in addition to the English tokenizer. We will learn

about NER in the upcoming chapter.

Apart from the basic tokenizer discussed earlier, NLTK has

task-specific tokenizers, some of which are as follows:

Twitter-aware The Twitter-aware tokenizer is designed to adapt

the tweet structure better. It has an additional function like

and the tokens will be in lower case if this is set to false.

strip_handles removes the names of the handle from the if

set to true, and then it truncates repeating characters, for

example, “!!!!” will be converted to the [‘!’, ‘!’] tokens.

Here’s an example of how to the tweet tokenizer works:

from nltk.tokenize import TweetTokenizer

tknzr = TweetTokenizer()

example_string = “””@mjcavaretta It’s great that you’ve

created a new

Machine Learning algorithm, but you’re not done until you’ve

released it on

#github, preferably using #rstats or

#python.#ai#machinelearning#bigdata#iot#ml#tech

#artificialintelligence

#datascience”””

print(“ With Default Parameter :

“,tknzr.tokenize(example_string))

tknzr = TweetTokenizer(strip_handles=True)

print(“ With Default Parameter :

“,tknzr.tokenize(example_string))

>>> With Default Parameter : [‘@mjcavaretta’, “It’s”, ‘great’,

‘that’,

“you’ve”, ‘created’, ‘a’, ‘new’, ‘Machine’, ‘Learning’, ‘algorithm’,

‘,’,

‘but’, “you’re”, ‘not’, ‘done’, ‘until’, “you’ve”, ‘released’, ‘it’, ‘on’,

‘#github’, ‘,’, ‘preferably’, ‘using’, ‘#rstats’, ‘or’, ‘#python’, ‘.’,

‘#ai’, ‘#machinelearning’, ‘#bigdata’, ‘#iot’, ‘#ml’, ‘#tech’,

‘#artificialintelligence’, ‘#datascience’]

>>> With Custom Parameter (lower case | striping handles) :

[“it’s”,

‘great’, ‘that’, “you’ve”, ‘created’, ‘a’, ‘new’, ‘machine’, ‘learning’,

‘algorithm’, ‘,’, ‘but’, “you’re”, ‘not’, ‘done’, ‘until’, “you’ve”,

‘released’, ‘it’, ‘on’, ‘#github’, ‘,’, ‘preferably’, ‘using’, ‘#rstats’,

‘or’, ‘#python’, ‘.’, ‘#ai’, ‘#machinelearning’, ‘#bigdata’, ‘#iot’,

‘#ml’,

‘#tech’, ‘#artificialintelligence’, ‘#datascience’]

Multi-Word Expression Tokenizer This is used to retokenize (or

merge) multiple words into one token. Many a time, breaking

by space also breaks the meaning; for example, the name of

the company Goldman Sachs is tokenized as and this

probably may not preserve the original meaning. Such cases

can be handled using

The following example shows how the MWETokenizer

tokenizer works:

from nltk.tokenize import MWETokenizer

example_string = “””Goldman Sachs’s Jan Hatzius expects the

Fed to hike

interest rates at least once in 2019.”””

tokenizer = MWETokenizer([(‘Goldman’,’Sachs’),(‘Jan’,

‘Hatzius’)])

print (tokenizer.tokenize(example_string.split()))

>>> [‘Goldman_Sachs’, ‘’s’, ‘Jan_Hatzius’, ‘expects’, ‘the’, ‘Fed’,

‘to’,

‘hike’, ‘interest’, ‘rates’, ‘at’, ‘least’, ‘once’, ‘in’, ‘2019.’]

Regular Expressions Regular Expressions tokenizers split the

string based on Regular Expressions. For example, such a

tokenizer forms tokens out of money expressions, alphabetic

sequences, and any other non-whitespace sequences. A

subclass of Regular Expression tokenizers is the Blackline

Tokenizer, which tokenizes based on the newline.

There are many other types of tokenizers like space tokenizer,

TabTokenizer, StringTokenizer, RegularExpression Tokenizer, and

Punkt Sentence Tokenizer so on. The details of all these

tokenizers, which are made for specific purposes, can be

found at NLTK Tokenizer package.

You can refer to the following links for more information:

Spacy https://spacy.io/usage/spacy-101

NLTK https://www.nltk.org/api/nltk.tokenize.html

Getting Familiarized with PyTorch

PyTorch is Python-friendly PyTorch implementation, actively

developed and maintained by Facebook. PyTorch has

something unique to offer; it has an intuitive, Python-friendly

development approach and is a little different and advanced

than the existing frameworks like Keras and TensorFlow.

Francois Chollet originally writes Keras. Keras is a high-level

wrapper that supports TensorFlow, Theano, and MXNet. Keras

is, indeed, the most lucid and powerful framework and is well

suited for newbies for converting ideas to a working model. It

is designed to enable fast experimentation with deep neural

networks, with the main aim being to provide faster

implementation by abstracting some of the layers, leading to

faster development. However, Keras is not deployment-friendly

and does not support the freezing graph to this date; it has

no ONNX support, so TensorRT cannot be used to optimize

graphs and for faster inference. Keras does allow custom layer

implementation, but it is highly dependent on the back-end

engine. Many times, the model that runs successfully on one

back-end returns an error when it is changed.

TensorFlow was developed by Google and placed in the open-

source domain. It is the best tool for high-performance

computing, and it has recently started supporting new

hardware, a Tensor Processing Unit, (TPU). TPU is claimed to

be faster than the GPU. TPUs are less flexible hardware than

GPU implementation-wise, but they are specifically designed

for processing tensors. TensorFlow’s development is quite

counter-intuitive and less Pythonic. The method by which

TensorFlow construct graphs is not quite pythonic, so you

cannot use great debuggers like pdb, ipdb, and PyCharm

debugger. You will have to use a specific tool like TensorFlow

debugger or tfdbg On the other hand, you can use any of

your favorite debuggers with PyTorch. TensorFlow is also

supported by an independent tool like TensorBoard, which

allows us to visualize the training process and supports

visualizing images histograms and embeddings. TensorboardX,

which is an open-source connector to connect any frameworks

output to TensorBoard, has all the benefits that you get using

TensorFlow. We will frequently use TensorboardX to visualize

our training progress using PyTorch. In many cases, PyTorch

is faster than other available frameworks, like TensorFlow or

Keras.

A majority of the research community prefers PyTorch because

of some of its features:

The PyTorch development style is quite Pythonic

Debugging the graph is easier

An active community is present for rescue whenever you get

stuck

Cross-platform support tools like ONNX and TensorBoard

enable efficient deployment and visualizations

This recipe will help you understand some of the basic syntax

and operations that will, eventually, help you catch-up easily

and understand various model developments using PyTorch.

Installation

If you are a native Numpy user and have used a higher-level

library like Keras, you will find PyTorch easy. You can easily

download and install PyTorch with We will use TorchText

frequently, and it can be installed very easily:

pip install PyTorch==0.4.1

pip install torchtext

PyTorch is a group of packages, including a tensor library

with strong GPU support, a neural network library, and an

auto differentiation library.

It has a total of five vital components, as listed in the

following table:

table: table: table: table: table: table: table: table: table:

table: table: table: table: table:

table: table: table: table: table: table: table: table: table:

table: table: table: table: table: table: table: table: table: table:

table: table: table: table: table:

table: table: table: table: table: table: table: table: table: table:

table:

Table 2.7

We will begin with basic tensor manipulation. PyTorch Tensor

manipulation is similar to Numpy. Also, the PyTorch has

strong integration with the GPU. So any operation that can

be done with CPU can be done with GPU with very little

time complexity:

import PyTorch # importing PyTorch

PyTorch Module

Initializing 3 * 2 matrix with a random number in PyTorch:

mat1 = PyTorch.randn([2,3])

mat1 >> tensor([[0.8992, -1.0515, 0.6143], [0.3743, -0.4616,

1.1338]])

Initializing another 2 * 3 matrix with a random number:

mat2 = PyTorch.randn([3,2])

mat >> tensor([[-0.6860, -1.6029], [-1.0089, -0.9182], [-0.3778,

-0.3748]])

Taking the Dot product of mat1 and mat2 . :

PyTorch.matmul(mat1, mat2)

tensor([[0.2119, -0.7061], [-0.2194, -0.6010]])

These tensors, by default, were present in RAM, and all the

calculations were carried out by CPU. What if we want to

carry out the operation with GPU? First, your machine must

have GPU hardware. PyTorch supports Nvidia GPUs. To

enable GPU computations on your data, you must pass your

data to GPU VRAM, which is analogous to RAM in the

computer but is faster. Plus, as it is within the device, it

allows faster computation with hundreds or thousands of

GPU cores with low latency.

To transfer data to GPU, it needs to get GPU’s address, and

that can be done as follows:

cuda = PyTorch.device(‘cuda’)

More specifically, if you have multiple GPUs attached to the

same motherboard, you can transfer your data to any specific

GPU:

cuda1 = PyTorch.device(‘cuda:0’) # GPU 1

cuda2 = PyTorch.device(‘cuda:1’) # GPU 2 (GPUs are 0-

indexed)

Generally, I prefer to use the following code, as it takes care

of any environment we want to run our code in:

device = PyTorch.device(“cuda:0” if PyTorch.cuda.is_available()

else “cpu”)

With an increase in the size of the model with billions of

parameters, it has been difficult to keep the required

parameters in the VRM of one GPU. Additionally, GPUs

connected through PCI express do not see each other directly,

so direct communication between GPUs in the same

motherboard was not possible. To resolve this problem, Nvidia

introduced a new architecture called With NVLink, GPUs can

see each other, and direct parameter/ data sharing became

possible. NVLink was first introduced in the NVIDIA Pascal™

architecture. NVLink on V100 GPU card with Tesla

architecture has increased the signaling rate from 20 to 25

GB/second in both directions. It can be used for GPU-to-CPU

or GPU-to-GPU communication, as in

Taking a little detour, PyTorch has the following data types

and their respective CUDA data types. Knowing these data

types will help you in error debugging. The following given

data types are PyTorch.org:

PyTorch.org: PyTorch.org:

PyTorch.org: PyTorch.org:

PyTorch.org: PyTorch.org:

PyTorch.org: PyTorch.org:

PyTorch.org: PyTorch.org:

PyTorch.org: PyTorch.org:

PyTorch.org: PyTorch.org:

PyTorch.org: PyTorch.org:

PyTorch.org: PyTorch.org:

Table 2.8

The PyTorch cannot combine operations between CPU tensors

and GPU tensors. To carry out operations between two

tensors, both tensors must be present in either GPU or CPU.

Whenever you get an error related to an operation between

CUDA and CPU tensors, checking the type of tensor may

help resolve it.

For example, let’s check the type of

mat1

>> tensor([[0.8992, -1.0515, 0.6143],[0.3743, -0.4616, 1.1338]])

Now, let’s check the type of mat1 after transferring it to GPU

VRAM. If one has a tensor present in RAM and wants to

transfer it to GPU VRAM, they can use .to operator. It

transfers any tensor to the defined GPU:

mat1.to(device)

>> tensor([[0.8992, -1.0515, 0.6143], [0.3743, -0.4616, 1.1338]],

device=’cuda:0’)

One may directly initialize tensor using device parameters

while making tensor. If you don’t have a GPU device or

proper drivers, this will throw a runtime error:

mat1_cuda = PyTorch.randn([2,3],device = device)

mat1_cuda

>> tensor([[0.8247, 0.0689, 1.0346], [0.5418, 0.1267, 0.5000]],

device=’cuda:0’)

So far, we have used only three functions, namely:

To generate random numbers

To send tensor to device

To calculate the dot product between two matrices

Hundreds of similar functions are present in PyTorch sub-

packages. Each function has a particular use and scientific

relevance, and GPU and CPU fully support all these functions.

We will discuss other similar functions in the upcoming

chapters.

In Chapter 3, Representing Language we will define more

complex objects by extending the PyTorch.nn module. After

understanding that concept, we will see how to reference

such an object with GPU so that the computation can be

lifted over to GPU.

Then, we will discuss another has all the layers required to

define any type of architecture, including LSTM, CNN, and

Feed Forward Network. Let’s look at defining a simple feed-

forward layer that takes ten input and gives two outputs:

linear1 = PyTorch.nn.Linear(in_features=10, out_features=2) #

defining a linear layer

dummy_tensor = PyTorch.randn([1,10]) # initialising a tensor

with 10 features.Size of such tensor will be [1,10]

linear_output = linear1(dummy_tensor) # passing

dummy_input to linear transformation layer

print (linear_output.shape) # output>> PyTorch.Size([1, 2])

Now, if we look at the linear layer closely, it has two

parameters attached: weights and bias. Weight is of size [2,

and bias is of size [2] (attached to each output). Both bias

and weights are trainable, so the values of both change with

every iteration.

The following method is used to see the parameters in the

various PyTorch layers:

print (“ All Parameters : “,linear1.parameters)

print (“ Shape of Weights : “,linear1.weight.shape)

print (“ Shape of Bias : “,linear1.bias.shape)

>> All Parameters : method Module.parameters of

Linear(in_features=10, out_features=2, bias=True)

>> Shape of Weights : PyTorch.Size([2, 10])

>> Shape of Bias : PyTorch.Size([2])

Let’s take an example of the Recurrent Neural Networks layer.

Gated Recurrent Unit is a popular unit used in designing

RNN architectures. If you don’t understand RNN architecture,

don’t worry! We will discuss GRU in detail in the upcoming

chapters. GRU can be defined and used in PyTorch as

follows:

GRU = PyTorch.nn.GRU(input_size=10, hidden_size=20,

num_layers = 2) # defining GRU

dummy_input = PyTorch.randn(5, 3, 10) # making dummy

input

hidden_state = PyTorch.randn(2, 3, 20) # hidden state

output, hidden_state = GRU(dummy_input, hidden_state) #

applying GRU to the input shape

Convolution Neural Network is another kind of architecture

supported by PyTorch. CNN stands popular for vision-related

applications, but CNN is gaining popularity in-text analytics-

related applications like entity recognition, embedding

generation, and language translation. Nowadays, it is common

to use CNN with RNN to get state-of-the-art results. We will

deal with CNN and hybrid network with CNN and RNN in

the upcoming chapters:

Conv_1 = PyTorch.nn.Conv1d(in_channels=16, out_channels=33,

kernel_size=3, stride=2)

dummy_input = PyTorch.randn(20, 16, 50)output =

Conv_1(dummy_input)

Apart from these architecture layers, PyTorch has various loss

functions. Loss functions measure the extent to which the

predicted output differs from the actual output. Loss functions

are present under the torch.nn package, and the choice of

loss function always depends on the objective of the training.

You can define a custom loss function; we will use custom

loss functions in the upcoming chapters while making a

language transliteration model. PyTorch supports many loss

functions by default, including the ones listed here:

L1Loss

Mean Squared Error Loss

Negative Log Likelihood (NLLLoss)

CrossEntropyLoss

Poisson Negative Log Likelihood (PoissonNLLLoss)

Kullback–Leibler divergence (KLDivLoss)

Binary Cross Entropy Loss (BCELoss)

Sigmoid layer and the BCELoss in one single function

(BCEWithLogitsLoss)

Each one is used for a specific purpose. Let’s see how to use

Mean Squared Error Loss with some predicted output and

actual labels. In the new PyTorch release 1.0.0, losses are

moved under the PyTorch.nn.functional package:

predicted_output = PyTorch.randn(3, 5)

actual_label = PyTorch.randn(3, 5)

loss = PyTorch.nn.MSELoss()

output = loss(predicted_output, actual_label)print(output)>>

tensor(3.1610)

Once the loss is calculated, various trainable parameters must

be adjusted to minimize loss. To do this, we use

mathematical functions called optimizers, and PyTorch

optimizers are placed under the PyTorch.nn.optim package.

PyTorch supports the Stochastic Gradient Descent ADAM,

AdaDelta, AdaGrad, and RMSProp optimizers by default.

Optimizer accepts a few of the parameters:

Trainable model parameters

Learning rate

Momentum

Other parameters like b1, b2 required for specific optimizers

like Adam optimizer

For input, target in dataset:

optimizer.zero_grad()

output = model(input)

loss = loss_fn(output, target)

loss.backward() optimizer.step()

All optimizers implement a step() method that updates the

parameters. It can be used in two ways:

optimizer.step()

The gradients are computed using, for example, backward()

In PyTorch, network architecture classes are made by

extending One architecture can have multiple layers attached

differently. Such a class must extend and implement two

methods:

init()

forward()

The init() method generally houses the initialization of various

layers, while the forward() method connects the layers

initialized in init() and forms a logical flow. A class can have

additional methods depending on the use case. Let’s take an

example of the model we discussed in Chapter 1,

Understanding the Basics of Learning Here I am initializing the

linear layer, which takes 100-dimensional input and converts it

to 2-dimensional output. Forward methods take this

predefined layer, apply it to the input, and provide output.

The following is the simple network architecture with a linear

layer:

class simple_module_1(nn.Module):

def __init__(self):

super(simple_module_1, self).__init__()

self.simple_linear = nn.Linear(100,2)

def forward(self, input):

“”

return self.simple_linear(input)

If we want to transfer our simple module to GPU, we can

use the .to operator as follows:

SM = simple_module_1(nn.Module) # making object for

simple_module_1 class

cuda = PyTorch.device(‘cuda’) # defining device

SM = SM.to(cuda)

The three basic building blocks to execute any learning tasks

are network architecture, loss function, and optimizers.

PyTorch also allows you to design custom architecture, loss

function, or optimizer functions. We will use these

components to construct a simple model in Chapter 3,

Representing Language

You can visit the following links to learn more:

https://torchtext.readthedocs.io/en/latest/

TorchText

https://media.readthedocs.org/pdf/torchtext/latest/TorchText.pdf

Using TorchText

TorchText is a powerful tool with data processing utility and a

popular dataset for natural language processing. Text

processing is a headache, and we must change pre-processing

and plugging mechanisms every time we change algorithms. It

is better if we use a kind of standard mechanism for text

processing, and decrease movable components as much as

possible.

The following image illustrates the requirement of TorchText in

the text processing pipeline:

Figure 2.1: The requirement of TorchText in the text processing

pipeline.

TorchText has three basic components:

TorchText.data

TorchText.datasets

TorchText.vocab

Let’s look at these basic components in brief:

The data sub-package provides flexible methods to define

preprocessing pipelines like batching, padding, and

numericizing datasets. In addition, the data package houses

additional functionality like splitting datasets, tokenizer,

random pooling, and so on.

The dataset sub-package houses some of the standard

datasets for tasks related to sentiment analysis, question

classification, entailment, language modelling, machine

translation, sequence tagging, and question answering. By

providing nascent support for this dataset, TorchText provides

an easy way to benchmark an experiment and helps in the

easier publication of novelty.

the vocab sub-package helps define vocabulary and load

predefined vectors like Glove, Word2Vec, FastText, and

CharNGram.

Having understood the basic underlined packages of

TorchText, I will walk you through some of the examples

utilized with TorchText. This example will help you understand

and use some of the utilities of TorchText in the upcoming

chapters:

import PyTorch

import torchtext

import json

from torchtext import data

from torchtext import datasets

Loading the TorchText supports loading data from JSON, Tab

Separated Values and Comma Separated Values Generally,

JSON is preferred as CSV/ TSV due to following reasons:

CSV/TSV cannot store data as a list, but JSON can.

TSV/ CSV data are error-prone as erroneous parsing occurs if

tab or comma is present in the data itself. This type of

parsing error is impossible in JSON.

Suppose we have the following JSON content and want to

read it using TorchText:

example_json = “””{“name”: “Sunil”, “location”: “United

Kingdom”, “age”: 27, “quote”: [“i”, “love”, “the”, “united

kingdom”]} {“name”: “Kinara”, “location”: “United States”,

“age”: 0, “quote”: [“i”, “want”, “more”, “toys”]}”””

With the train.json file we use in our example, the dataset

will look like this:

{“name”: “Aaayash”, “location”: “United Kingdom”, “age”: 12,

“quote”: [“i”, “want”, “the”, “stun granade”]}{“name”:

“Mayuresh”, “location”: “United States”, “age”: 20, “quote”:

[“i”, “want”, “Guns”]}

Now, we define the field for each key in the JSON format.

Fields determine how data is pre-processed and converted to

a numeric format. Let’s not specify any pre-processing

function and use our data as is:

NAME = data.Field()

PLACE = data.Field()

QUOTE = data.Field()

All individual fields are now collected into one variable field,

with appropriate mapping to JSON keys. For example, the

JSON key name is mapped to the field and so on:

fields = {‘name’: (‘n’, NAME), ‘location’: (‘p’, PLACE), ‘quote’:

(‘q’, QUOTE)}

Now, we will use the tabularDataset.split function to split our

dataset into train and test data:

train_data, test_data = data.TabularDataset.splits(path =

‘NLP_Cookbook/Chapter2/data/’, train = ‘train.json’, test =

‘test.json’, format = ‘json’, fields = fields)

print(vars(train_data[0])) # printing the first data in train_data

>> {‘n’: [‘Aaayash’], ‘p’: [‘United’, ‘Kingdom’], ‘q’: [‘i’, ‘want’,

‘the’, ‘stun granade’]}

Earlier in the Data Fields, we did not define any pre-

processing function. Now, we will define a function to convert

the quote field to capitals:

def capitalize(word_array):

return [i.upper() for i in word_array]

NAME = data.Field()

PLACE = data.Field()

QUOTE = data.Field(preprocessing=capitalize)

#using the same data

setsfields = {‘name’: (‘n’, NAME), ‘location’: (‘p’, PLACE),

‘quote’: (‘q’, QUOTE)}

train_data, test_data = data.TabularDataset.splits(path =

‘NLP_Cookbook/Chapter2/data/’, train = ‘train.json’, test =

‘test.json’, format = ‘json’, fields = fields)

print(vars(train_data[0])) # printing the first data in train_data

>> {‘n’: [‘Aaayash’], ‘p’: [‘United’, ‘Kingdom’], ‘q’: [‘I’, ‘WANT’,

‘THE’, ‘STUN GRANADE’]}

Now, you can see that all the words in the Quote fields are

converted to upper case. For example, in pre-processing

parameters, we can define the tokenization function to

tokenize sentences to words:

QUOTE.build_vocab(train_data)

vocab = QUOTE.vocab

print(“vocab : “, vocab)

print(“Token strings to numerical identifiers : “,

QUOTE.vocab.stoi)

print(“Token numerical to strings identifiers : “,

QUOTE.vocab.itos)

print(“Token Frequency : “, QUOTE.vocab.freqs) # frequency of

the original vocabulary created by Field

print(“First 3 token of first train example :

“,train_data.examples[0].q[:3])

>> vocab : <torchtext.vocab.Vocab object at 0x7fd282c615c0

>> Token strings to numerical identifiers :

defaultdict(_default_unk_index at 0x7fd282d048c8>, {‘’: 0, ‘’: 1,

‘I’: 2, ‘WANT’: 3, ‘GUNS’: 4, ‘STUN GRANADE’: 5, ‘THE’: 6})

>> Token numerical to strings identifiers : [‘’, ‘’, ‘I’, ‘WANT’,

‘GUNS’, ‘STUN GRANADE’, ‘THE’]

>> Token Frequency : Counter({‘I’: 2, ‘WANT’: 2, ‘THE’: 1,

‘STUN GRANADE’: 1, ‘GUNS’: 1})

>> First 3 token of first train example : [‘I’, ‘WANT’, ‘THE’]

Similarly, we can use a CSV or TSV file as input. Let’s take

an example by loading CSV files. The example train.csv file

looks like this:

this:

this: this: this: this: this:

this: this: this: this:

Table 2.9

Following block shows how to quickly read file using

TorchText

defining tokenizers to convert sentence to words

def tokenizer(sentence):return

sentence.split() # quick and dirty splitting

defining fields

NAME = data.Field()

PLACE = data.Field()

QUOTE = data.Field(tokenize=tokenizer)

While processing CSV or TSV, we must omit the fields that

we are not using. You can use (None, None) to omit these

columns. At this moment, we will omit the Age column using

(None, None) in the third position. One more thing is that I

have used the tokenizer for the QUOTE column, so the

sentences are also tokenized in the final output. Additionally,

validation data is also included:

#using the same datasets

fields = [(‘n’, NAME), (‘p’, PLACE), (None, None), (‘q’,

QUOTE)]

train_data, valid_data, test_data =

data.TabularDataset.splits(path =

‘NLP_Cookbook/Chapter2/data/’, train = ‘train.tsv’, validation =

‘valid.tsv’, test = ‘test.tsv’, format = ‘tsv’, fields = fields,

skip_header = True)

print(vars(train_data[0])) # printing the first data in train_data

>> {‘n’: [‘Karry’], ‘p’: [‘United’, ‘Kingdom’], ‘q’: [‘i’, ‘have’,

‘money’]}

Vectorization is the process of converting a word to an n-

dimensional dense vector of floats. We will learn about

techniques to generate embeddings in Chapter 3, Representing

Language With TorchText, it’s very easy to vectorize tokens;

one can do it easily by specifying a type of vector they want

to use while building vocab. PyTorch text automatically

downloads the specified vectors inthe ./.vector_cache temp

directory. These are all vectors supported by TorchText, and a

few of them are and

embeddings = QUOTE.build_vocab(train_data,

vectors=”glove.6B.100d”)

We have six different words in our vocabulary {‘’: 0, ‘’: 1,

‘have’: 2, ‘i’: 3, ‘money’: 4, ‘power’: 5}, so

QUOTE.vocab.vectors will give a 100-dimensional vector for

each word. One can easily take such vectors and feed it to

any machine learning algorithm:

QUOTE.vocab.vectors.shape # will provide output shape

>> PyTorch.Size([6, 100])

Vectors for any word can be obtained using the syntax in the

following code block:

have_vector = QUOTE.vocab.vectors[QUOTE.vocab.stoi[‘have’]]

print(have_vector)

>> tensor([0.1571, 0.6561, .., -0.6061, 0.7100, 0.4147])

TorchText is good at handling the unknown word. Other

techniques may give an unknown word index or may require

explicit try and catch syntax. However, TorchText handles

everything wonderfully. The following code snippet shows how

TorchText handles previously unseen words:

unknown_word = “humbahumba”

print(“Index for unknown word %s: %d” %(unknown_word,

vocab.stoi[unknown_word]))

print(“Token for unknown word: “,

vocab.itos[vocab.stoi[unknown_word]])

>> Index for unknown word humbahumba: 0

>> Token for unknown word:

After training valid and test partition are generated, Iterator

allows us to specify the batch size. We have only two

examples, so I have kept the batch size as 2, and we get

one batch to iterate over:

train_iter, val_iter, test_iter = data.Iterator.splits((train_data,

valid_data, test_data), batch_sizes=(2,-1,-1),

sort_within_batch=True, repeat=False)

train_data.examples

>> [at 0x7fd2803f7f28>, <;torchtext.data.example.Example at

0x7fd2b668e8d0>]’

You can explore the TorchText document at Some of the

functionalities of TorchText are now merged with PyTorch and

can be found at

Visualizing Using TensorBoard

TensorBoard is an independent project by Google and is

tightly integrated with TensorFlow. Machine learning models

are getting complex, and visualization helps track the

progress. TensorBoard was developed for TensorFlow, and

TensorboardX is an open-source tool that helps connect

another framework like PyTorch, MXNet, and Keras to

TensorBoard.

The following image shows TensorboardX as an intermediate

tool that connects frameworks like PyTorch, MXNet, and Keras

to TensorboardX:

Figure 2.2: TensorBoard, a look at web-based UI.

The following is an illustration of how to install and get

started with TensorBoard and TensorboardX.

Install TensorBoard and TensorboardX using out the preferred

installer,

pip install tensorboardX==0.15.4

pip install tensorboard==1.12.2

pip install --user --upgrade TensorFlow # TensorBoard depends

on TensorFlow

Once installed, start TensorBoard by issuing the following

command, where path/to/log-directory is the directory where

TensorboardX sends the output:

tensorboard --logdir=path/to/log-directory

It will bring you to a web-based GUI that looks as follows:

Figure 2.3: TensorBoard, a look at web-based UI.

Showing Scalar Values on TensorboardX

TensorBoard supports various types of visualizations, including

scalar, histogram, images, video, text, and embedding. First,

the summary writer object is created, and this object has

various options like adding scalar, image, histogram, figure,

graph, audio, and embedding. Here, I am using the add

scalar option.

The add scalar takes three inputs, namely:

The name of a scalar

The value on the Y-axis

Value on X-axis (generally iteration/ epoch count)

The following code snippet shows how to project scalars on

the TensorBoard using

from tensorboardx import SummaryWriter # init

import math

import random

writer = SummaryWriter()

writing both to separately

for i in range(0,100):

writer.add_scalar(‘sin’,math.sin(i*0.001) + random.random(), i)

writer.add_scalar(‘cos’, math.cos(i*0.001) + random.random(),

i)

writer.export_scalars_to_json(“./all_scalars.json”)

writer.close()

After running the preceding tfboardExperiments/scalar.py script,

it will create the runs directory in the same location as the

code. Then, start your TensorBoard server with log directory

pointing at the ./runs directory - TensorBoard Go to

TensorBoard and refresh the view; you will get a plot for sin

and You will see the following diagram showing random

values:

Figure 2.4: How to add scalars to tensorboard using

TensorboardX.

Add scalar can be used to plot quantities like loss or

accuracy on the Y-axis versus epochs on X-axis can be

plotted.

Projecting Images to TensorboardX

When we work with image datasets, we must also keep track

of what output is generated at what epoch. TensorBoard

provides good support for the images. In the following code,

I am generating random images of size [3, 256, 256] and

adding them to a writer with the add_image function.

Here, add image takes three parameters:

Names of the images

Image as a Numpy array or PyTorch array

Iteration number

Here’s the code snippet to show scalar to the TensorBoard

using TensorboardX:

from TensorboardX import SummaryWriter

import numpy as np

writer = SummaryWriter()

for i in range(0, 10):

dummy_img = np.random.random([3, 256,256])

output from network

writer.add_image(‘Image’, dummy_img, i)

writer.export_scalars_to_json(“./all_scalars_2.json”)

writer.close()

After successful execution of the tfboardExperiments/images.py

script, you will get the following output in the TensorBoard:

Figure 2.5: How to add images to the tensorboard using

tensorboardX.

As shown in the preceding diagram, a slider/knob is provided

to help you see images at a given step/ epoch/ time as

specified during image writing.

Showing Text on tensorboardX

We may require text while working with the text, and

TensorBoard has text support. While writing data, you must

specify the identifier, text, and iteration number. The

TensorBoard will show text grouped by the identifier in the

UI.

The following code snippet shows text content in the

TensorBoard with the help of tensorboardX:

from TensorboardX import SummaryWriter

writer = SummaryWriter()

for i in range(0, 10):

writer.add_text(‘mytext’, ‘this is a pen_’ + str(i), i)

writer.export_scalars_to_json(“./all_scalars_2.json”)

writer.close()

After executing the tfboardExperiments/text.py script, you will

see the following output:

Figure 2.6: How to add text to the Tensorboard using

tensorboardX.

Projecting Embedding Values on tensorboardX

The last function that we will use extensively is embedding—a

higher dimensional representation. Visualizing such

embeddings in lower dimensions (generally 2D or 3D)

provides an idea about the quality of the embedding. Here, I

have generated random embeddings of dimension 20 for 32

numbers to demonstrate the functionality. Add the Embedding

function to take this high-dimensional vector array label as

input.

The following code shows embeddings to the TensorBoard

using TensorboardX :

from tensorboardx

import SummaryWriter

import numpy as np

writer = SummaryWriter()

i = [np.random.randint(0,100)

for i in range(0,32):

writer.add_embedding(np.random.random([32,20]), i)

writer.export_scalars_to_json(“./all_scalars_2.json”)

writer.close()

After running the preceding tfboardExperiments/embeddings.py

you will get the following output. TensorFlow generates 3D

projection by PCA or TSNE and helps in the inspection. Upon

selecting any of the points in TensorBoard, it shows other

nearby points:

Figure 2.7: How to add Embedding to the Tensorboard using

TensorboardX.

To practically see how TensorBoard is helpful, I have provided

a tfboardExperiments/MNIST.py script, which uses the network

with one linear hidden layer and optimizes the network for

5000 epochs to identify digit in the MNIST dataset. This

script will write scalar, histogram, and images to

TensorboardX. One of the benefits of using TensorBoard is

that you can always monitor progress/parameters and see

whether the network is converging.

You can visit the following link:

TensorboardX:

https://tensorboardX.readthedocs.io/en/latest/tutorial.html

Conclusion

In this chapter, we went one step ahead in our goal to

master the domain of natural language processing. We started

with data retrieval, and processing knowledge of such

technique is essential to collect application-specific data.

Remember, generally available data cannot satisfy all business

needs, so one will always need a custom dataset for custom

problems, which can be gathered from various sources.

Stemming and Lemmatization techniques are, although not

perfect, used for machine learning applications and

significantly help reduce/concentrate the vocabulary size. We

covered the basic tokenization techniques. That said, modern

techniques like Bert are using far more advanced and

memory-efficient tokenization techniques, which we will cover

in the upcoming chapters. We moved on to learn a basic

snippet of PyTorch—the framework that we will use

throughout this book. PyTorch text is the package that greatly

simplifies the preprocessing pipeline, so we will use TorchText

and PyTorch data loaders—a more generalized class for data

loading that comes out of the box with PyTorch.

In the next chapter, we will learn how to represent language

mathematically.

CHAPTER 3

Representing Language Mathematically

In previous chapters, we have covered all that required to

understand and implement basic machine learning models.

We have also seen how to utilize TorchText and TensoboardX

to process the text better and visualize the results as well as

the training process. This chapter is about getting started

with the mathematical representation of the text. Representing

text mathematically so that it offers better meaning to the

machine. This an active area of research, and many big

players such as Google, Microsoft, and Facebook are

constantly working and producing state of the art models.

This chapter will walk you through the basic count-based

vectorization approaches such as Co-occurrence Matrix and

TF-IDF. This chapter in-depth covers the predictive dense

vector generation approaches such as Word2Vec, GloVe, and

FastText.

Structure

In this chapter, we will cover the following recipes:

Prerequisite

Encompassing knowledge to numbers

Understanding co-occurrence matrix

Understanding TF-IDF

Understanding Word2Vec

Understanding GloVe

Understanding character-based embedding

Objective

This chapter mainly focusses on how to convert language to

mathematical representation. Such mathematical representation

of the human language can be consumed by machine

learning/deep learning algorithm to perform the different

natural language processing tasks.

Prerequisite

I have provided some of the examples through codes. Codes

for this chapter are present in the folder Ch3 at GitHub

repository To understand this chapter, you require to have

some basic knowledge about the following python packages:

Numpy

Scipy

Matplotlib

FastText

Torch

TensorboardX

Nltk

Tqdm

Matplotlib

You may install these requirements by installing all the

packages listed in It can be simply done by issuing pip

install -r

Encompassing knowledge to numbers

Computers are made for the purpose to compute with

numbers. Mathematical logic can only be applied to numbers.

Natural language is used by humans, and it has very different

fundamentals then the numbers. Language is meant to

communicate and has basic building blocks, such as

characters and words. Mathematics is known as the language

of the universe, and each representation has an absolute

never changing meaning, whereas natural language has

fuzziness. In natural language, one word or character can

have a different meaning as per its context.

Language has a different level of organization. Such as a

basic entity is called a character; many characters come

together to form a word. Many words in a linguistic fashion,

if arranged, form a meaningful sentence. Such a sentence, if

arranged in peculiar order around a particular topic, such a

bunch of sentences is known as In literature, sometimes

sentence and paragraphs are referred to as A word is often

referred to as a Some languages are character based such as

Chinese and Japanese, wherein each character has a similar

meaning as words in other languages. Generally, words are

separated by spaces, but it’s often not true; in Chinese and

Japanese, there is no rule for token separation. A word in

one language has a different meaning in another language. A

word surrounded by some tokens has a different meaning

than the same word surrounded by different tokens in a

sentence. This is also known as polysemy of the word.

Polysemy means a word having a different meaning in a

different context. These are a few peculiarities of languages to

make you aware of the challenges hidden in the language

understanding. To represent a word in the form of a number

so that the number carries all these inherent characteristics of

the language is even a bigger task to accomplish. Modern

development has taken care of many of the aspects of

language representation; still, much has to be accomplished

to reach the human level performance.

Embedding is a high dimensional representation of the word

or token. Here, high dimensional representation is a dense

vector, with a floating number of a size from 100 to 1000.

Let us say if we have any word, then it can be represented

in a vector of size 100.

Understanding the different approaches of converting a

word/token to its embedding
According to the previous discussion, a character or word or

a sentence can be represented in the form of a number. I

am keeping a little secret by not talking about the characters

and sentences. Let us go ahead with representing word to

numbers. Following are the ways in the Chronological order

that comes to our mind when we think of representing word

to numbers:

Id based If we have two words, Cat and Let us say we label

id 123 to the word cat and id 345 to panther. These two ids

don’t show any relations between cat and panther. Both

belong to the same family in classification, and both are

mammals. Now, let us say, I take another word pigeon, then

we cannot calculate the relation between the three words.

Ideally, Cat and Panther are more related then Pigeon. In

language, the way a word is written or spoken, every word is

related to each other. If your simplest approach cannot be

able to show the inherent relationship between the two

words, then it is obviously going to fail. Another problem is

if you have billions of words, then you have to number them

from one to billion. Now, this seems a terrible idea. What if

you have received a word which is a typo mistake, and the

actual token was each In this case, your id-based approaches

will not be able to find any id for such word, and it fails.

The one hot One hot encoding is representing categorical

variables as binary vectors. This technique is inspired by

digital circuits. Continuing with the preceding example. If we

have vocabulary size as 2, the cat will be represented as [0,

1], and the panther will be represented as [1, 0]. This suffers

from the same problem of being sparse. If we have billions

of words, this technique would fail as we run out of memory.

Additionally, there is no correlation between the two vectors.

Co-occurrence It is inspired by the contextual meaning of the

words. A word is characterized by the company it keeps. This

technique will be discussed in the next recipe of the chapter.

Term Frequency based measures: These methods provide

weight to the word according to the occurrence of the word.

Techniques like TF-IDF falls into this category. This technique

will be discussed in detail in the upcoming recipes of this

chapter. Co-occurrence and TF-IDF fall into a single category

known as the count-based

Predictive approaches: This is the wider most class to

generate embeddings. Methods belonging to this class usually

take help of a neural network or deep learning algorithm such

as LSTM and CNN to the meaningful dense representation of

the word. These techniques operate at the level of characters,

words, and sentences. We will be discussing these techniques

in the upcoming recipes. Word level embeddings where the

dense vector is generated based on word-level features,

whereas character level embeddings where the dense vector is

generated based on the character level features. The word and

character level embeddings will be discussed in the upcoming

recipes. These embeddings convert a word into a fixed vector

of size 100, 200, or 300. This vector is then taken as input

to the subsequent machine learning tasks. The sentence level

embeddings will be discussed in Chapter

Now, we know little about the embeddings, and the obvious

question is why we require embeddings. The first thing that

comes to mind is we are unnecessarily increasing the data-

size by converting a single word in to a float vector of size

100. This type of high dimensional representational is also

known as dense vector representation. Well, this seems to be

a storage intensive solution, but this is the best we can do.

In addition, if such vectors generated by the predictive

approaches are properly built, then it produces meaningful

relationships as follows:

Vectors are mathematically represented with double bars on

both sides of the vector. Vector is which is represented as

Vectors are many times represented by single bars on both

the sides In the upcoming recipe, we will train our own word

and character-based embeddings and practically see if the

preceding mentioned facts hold true or not.

Refer to the following links:

Neural information retrieval: a literature review

https://arxiv.Org/abs/1611.06792

Symbolic, distributed, and distributional representations for

natural language processing in the era of deep learning is as

follows: a survey https://arxiv.Org/pdf/1702.00764.Pdf

Understanding co-occurrence matrix

A single word has no meaning in language, but when it is

combined with context, it gives meaning. This is the main

intuition behind this technique. Often in image processing,

the co-occurrence of pixel is taken as a prominent feature.

Similarly, in language, the co-occurrence of the word can also

be considered a useful feature.

Generally speaking, the co-occurrence matrix is a square

matrix with an equal number of entries in rows and columns.

The value of the element for a given row and column

represents the number of times both entities co-occur. Hence,

to make such matrix, you need to define your number of

entities as well as the context window in advance. Generally,

the context window is kept between 5 and 10 as follows:

Figure 3.1: Pictorial representation of target and context word by

taking context windows 1 to 3

The preceding figure is a pictorial representation of target and

context word by taking context windows from 1 to 3.

Constructing a co-occurrence matrix

To give you an example, I am taking a context window as 1.

It means that each word is defined by a word left to it and

a word right to it. Mathematically, this relationship is defined

as the co-occurrence matrix for each window. To construct a

co-occurrence matrix, consider the following example text, I

am an ML scientist, and I love working with

Figure 3.2: Co-occurrence matrix for an example statement.

Preceding is the co-occurrence matrix for an example

sentence. By default, the co-occurrence for the word is not

counted with self, and hence, the diagonal in such a matrix

is always zero. The co-occurrence matrix usually has bilateral

symmetry, and such a matrix remains highly sparse. Here, I

have just put 1 wherever co-occurrence exists; there can be

other variation where number count of co-occurrence

frequency two words occur can be counted in some of the

cases where the relative distance between two words can be

calculated, and the co-occurrence matrix is constructed. Here,

the nearby word gets the most weight, and this weight decays

as the distance between the two words increases in the

context windows. We will be using this kind of co-occurrence

matrix while constructing GloVe embeddings. I have

implemented a basic version of such a matrix, and it is

shown as follows:

Figure 3.3: Co-occurrence matrix with distance-based weight decay.

You may experiment with script A function

_create_cooccurrence_matrix_ is the main function in the

script as follows:

def create_cooccurrence_matrix(text, context_size):

word_list = text.split()

vocab = np.unique(word_list)

w_list_size = len(word_list)

vocab_size = len(vocab)

w_to_i = {word: ind for ind, word in enumerate(vocab)}

comat = np.zeros((vocab_size, vocab_size))

for i in range(w_list_size):

for j in range(1, context_size + 1):

ind = w_to_i[word_list[i]]

if i - j > 0:

lind = w_to_i[word_list[i - j]]

comat[ind, lind] += round(1.0 / j, 2)

if i + j < w_list_size:

rind = w_to_i[word_list[i + j]]

comat[ind, rind] += round(1.0 / j,2)

return comat

samples = ‘I am a ML scientist and I love working with data

.’ cooccurrence_matrix = create_cooccurrence_matrix(samples,

context_size=3)

By keeping the context size between 1 and 3 in the preceding

script, you will see a different type of co-occurrence matrix, as

shown in the preceding figure. The co-occurrence matrix

seems to be one step ahead of our simplest id-based

approach because it takes context into consideration, and

hence, makes it more sound fundamental.

A co-occurrence matrix is used in constructing GloVe and

Word2Vec embeddings. There are certain disadvantages in

using a co-occurrence matrix, which is eventually restricting its

usage; these disadvantages are listed as follows:

Once the matrix is constructed, adding new word requires

recalculation of the entire matrix.

Change in the context windows also requires recalculation of

the entire matrix.

This matrix tends to become voluminous owing to its sparse

and symmetric nature. Handling a co-occurrence matrix with

vocabulary size in million requires a distributed system like

HDFS. It requires a huge memory to store the co-occurrence

matrix.

GloVe embedding extends the concept of the co-occurrence

matrix to one step further by applying the statistical learning

on top of it. We will learn in detail about GloVe embedding

in the upcoming chapters.

As we discussed at the beginning of this chapter that the use

of co-occurrence matrix is not restricted to text processing,

but it is used in image processing too. Grey-level co-

occurrence matrix is used in vision processing to characterize

the texture of an image by calculating how often the pairs of

a pixel with specific values and in a specified spatial

relationship occur in an image.

Please take a look at the following reference:

Grey level co-occurrence matrices: generalization and some

new features: https://arxiv.Org/pdf/1205.4831.pdf

Understanding TF-IDF

Term Frequency-Inverse Document Frequency has two

following parts into it:

Term frequency

Inverse document frequency

The TF-IDF technique was historically used by search engines

to rank the domains and to calculate cost per clicks (with

some additional features). TF-IDF is mostly used in

recommended systems. TF-IDF is not used much in deep

learning model to a major extent, but it is used in machine

learning.

Term frequency

TF refers to the frequency of the word appearing in the

document divided by a number of words in the document. TF

helps in identifying those words which occur more often in

the document. Such words with high frequency are usually

stop-words, such as or TF can be mathematically designated

as follows:

Where is the frequency f of the given term t in the document

and it is divided by sum of all other terms present in the

document Consider a document containing 1000 words

wherein the word cat appears three times. The term frequency

(that is, TF) for cat is then (3/1000) = 0.003.

Inverse document frequency

The term frequency is the measure that takes into account

the frequency of the word in a document. What about those

words that are more important but are not more frequently

used? The inverse document frequency is here to take care of

the important but less frequent words and nullify the most

frequent words, which are usually known as stop-words. IDF

can be mathematically defined as follows:

Where IDF is log of N (total number of words in document)

divided by (the number of documents where the term is

present). Now, assume we have 100 million documents, and

the word Stephen appears in one thousand of these. Then,

the inverse document frequency (that is, IDF) is calculated as

log(100,000,000/1,000) = 5. If a more frequent word like the

occurs in almost all documents, then such word decreases,

and hence, the importance of such word is reduced as

follows:

TF – IDF = TF * IDF

Thus, the TF-IDF weight is the product of these two

quantities: 0.003 * 4 =

Constructing TF-IDF matrix

To create TF-IDF, one may use TfidfVectorizer function from

Scikit-learn. To get TF-IDF of any corpus, we need to provide

each corpus as a separate element of the array. Here, this is

the one document.’, ‘this is the second document.’, and ‘and

this is the third one.’ are considered to be individual

documents as follows:

corpus = [

‘this is the one document.’,

‘this is the second document.’,

‘and this is the third one, which is very similar to first one.’,

‘is this the first document relates to politics?’,]

vectorizer = TfidfVectorizer()

X = vectorizer.fit_transform(corpus)

print(vectorizer.get_feature_names())

print(csr_matrix.todense(X))

Run the script Ch3/tfidf.py, and with the help of the plotting

library Matplotlib, the TF-IDF can be visualized as follows:

Figure 3.4: TF-IDF applied to example sentences

From the figure, you can see that the TF-IDF value for words

like second and first is higher than the more frequent words

like the and In the present matrix, the difference between the

TF-IDF value of a more and less frequent word is minor. This

difference will grow as the corpus size increases, so it is very

important that one should take a sufficiently large corpus to

make sense with TF-IDF. After TF-IDF, the first document ‘this

is the document one.’ can be represented by the resultant TF-

IDF. This vector can be used in the subsequent machine

learning pipeline.

TF-IDF can be applied to many other areas like its usage to

determine the word relevance. TF-IDF calculates values for

each word in a document through an inverse proportion of

the frequency of the word in a particular document to the

percentage of documents the word appears in. Words with

high TF-IDF numbers imply a stronger relationship with the

document they are present with, suggesting that if that word

were to appear in a query, the document could be of interest

to the user.

Please refer to the following link:

Using TF-IDF to determine word relevance in document

queries: citeseerx. Ist. Psu. Edu/viewdoc/download?

Doi=10.1.1.121.1424&rep=rep1&type=pdf

Understanding Word2Vec

The word to vector technique is popularly known as

Word2Vec. Word2Vec is basically taking the concept of co-

occurrence-based information to the next level by applying a

single hidden layered neural network to it. Word2Vec was

originally proposed by a Google researcher Tomas Mikolov in

2013. Word2Vec belong to the category of Vector Space

Models These models usually represent a word into a multi-

dimensional vector; such a vector is developed so that the

similar or most often co-occurrence word is placed nearby in

the vector space. The different approaches that leverage this

principle are divided into two categories as follows:

Count-based method

Predictive approaches

As we have already discussed, count-based methods learn co-

occurrence of different words with a certain window size and

generate the matrix. Such a matrix with high dimensions is

usually converted into a dense vector by using Principle

Component Analysis or Singular Vector Decomposition

Whereas in predictive approaches hidden representation is

learned by forcing the network to predict the context of the

word from target word or another way around. Word2Vec falls

into this category. Word2Vec is a computationally reliable and

mathematically stable approach that learns vector

representation by using either Continuous Bag of Words or

SkipGram technique. These two techniques are different ways

by which a Word2Vec model can be trained. Before we go

into the technicality and details of these two techniques, let

us see how in general a Word2Vec model is trained. A

Word2Vec model is a single hidden layered neural network

with linear or no activation (or linear activation). It has three

layers, namely, an Input a Hidden and an Output Layer as

shown in the following figure:

Figure 3.5: A generic neural network architecture to train

Word2Vec model

Mathematically, it can be given as follows:

Here, in the preceding equation, we are having a vocabulary

size of 500, so each token X can be given as one hot vector

of size (1, 500). We want to keep our embeddings H

dimension as 300, so we multiply input X with the weight

matrix of dimension (500, 300). Now, this embedding vector

is multiplied with another weight matrix of size (300, 500) to

convert it to a target vector representation, which is mostly in

a float number showing the likelihood for each vocab token.

Softmax operation is applied to such output to calculate the

probability distribution. In this distribution, the target token is

one that is having the highest probability. If this predicted

token Ŷ is the same as then error is zero else error back

propagates, and weights are adjusted accordingly.

The torch is used to design our three layered neural

networks. tensorboardX for to write output so that

TensorBoard can plot it. SummaryWriter writes the output to

disk and will be read by tensorboardX as

import torch

from torch.autograd import Variable

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from tqdm import tqdm

from tensorboardX import SummaryWriter

import numpy as np

writer = SummaryWriter(log_dir=’runs/’)

torch.manual_seed(1)

Understanding methods to train Word2Vec

In this section, we will be learning the methods that are

required to train Word2Vec:

Continuous Bag of Words CBOW is one of the approaches to

train the Word2Vec model. The CBOW model takes the

context word and tries to predict the Target word. In the

following figure, considering the window size, 2 are the

context words, and the word is the target word.

Figure 3.6: Showing target and context words with co-occurrence

window = 2

It is showing the target and context words with the co-

occurrence window = 2. The Network consists of an input

layer that takes all these contextual words and tries to predict

the target word. Let us say we have a small vocabulary size

of 500. Each input word X will be represented by one-hot

encoding so that each context word will be represented by a

vector of size [1, 500]. Let us decode that we want our

embedding size to be N = 300. Considering this, the size of

input weight will be [500, 300]. The Dot product of X with

produces a hidden vector of size 300. The hidden dimension

is multiplied with another weight of size [300] to produce a

target token of dimension [1, 500].

Figure 3.7: showing SkipGram and CBOW network architecture

The entire CBOW algorithm can be, mathematically,

summarized as follows:

Using a similar model to the CBOW. In fact, SkipGram is the

reverse of the CBOW model. Here, the task is to predict a

context from the target word. As per the preceding figure

with window size 2, the context words will be [“a”, “ML,”

“and,”, “I”] which are predicted using the target word

“Scientist.” Dimensional explanation is just the reverse of the

CBOW approach.

Having understood both the approaches, we will now be

implementing both the approaches and visualizing the

generated vectors using TensorBoard. In the recipe, I will be

walking you through some of the essential components of the

CBOW and SkipGram. If you want to run end-to-end

examples, please refer to script By running this script end-to-

end, you will get an idea about the following aspect of the

Word2Vec:

Designing the pre-processing pipeline

Writing simple models like CBOW and SkipGram in PyTorch

Defining the loss and optimizer function

Tracking the loss and ensuring convergence

Examining the embeddings with TensorBoard

Implementation

In the following code implementation, I have covered an

implementation related to CBOW only. In the script, I have

also implemented the SkipGram related portion too.

Includes removing stop words by using the NLTK library. This

module takes text and iterates over all the sentences, removes

stop-words, and again returns the sentences with filtered

words as follows:

def remove_stop_words(text):

all_sentence = []

stop_words = set(stopwords.words(‘english’))

for each_sentence in text:

word_tokens = word_tokenize(each_sentence)

filtered_sentence = [w for w in word_tokens if not w in

stop_words]

all_sentence.append(‘ ‘.join(filtered_sentence))

return all_sentence

Reading data, vocabulary Here, we are defining the context

size as 2 that means two words to the left and right to the

target word will be selected as context. Next is reading the

text. Here, I am using a small dataset made-up by taking

different abstracts from Wikipedia. You may look into the file

Ch3/data/testdata_en.txt to have an idea about how our

dataset looks like. Next is generating vocabulary, identifying all

unique tokens, and making a word to index and index to

word dictionary as follows:

CONTEXT_SIZE = 2 # 2 words to the left, 2 to the right

text = open(“Change this”).read().split()

text = remove_stop_words(text)

vocab = set(text)

vocab_size = len(vocab)

print(‘vocab_size:’, vocab_size)

w2i = {w: i for i, w in enumerate(vocab)}

i2w = {i: w for i, w in enumerate(vocab)}

Create a dataset for As shown in the preceding figure, CBOW

takes the context words and tries to predict the target word.

The dataset is prepared accordingly by using the following

function:

def create_cbow_dataset(text):

“””

Create data for CBOW

“””

data = []

for i in range(2, len(text) - 2):

context = [text[i - 2], text[i - 1],

text[i + 1], text[i + 2]]

target = text[i]

data.append((context, target))

return data

You can execute a preceding function on to our text data,

and you will observe that the prepared dataset for CBOW is

having pairs of the context words and the respective target

word as follows:

cbow_train = create_cbow_dataset(text)

>>>cbow sample ([‘First’, ‘Citizen :’, ‘’, ‘proceed’], ‘Before’)

Creating CBOW As illustrated in the preceding figure that the

CBOW model has three layers, namely, input, output, and a

hidden layer. As per the PyTorch convention, the network class

has two functions. In the __init__() function, we define all

the layers that will be needed to construct the network. In

the forward() function, we connect all these previously defined

functions to construct a proper architecture as follows:

class CBOW(nn.Module):

def __init__(self, vocab_size, embd_size, context_size,

hidden_size):

super(CBOW, self).__init__()

self.embeddings = nn.Embedding(vocab_size, embd_size)

self.linear1 = nn.Linear(2*context_size*embd_size, hidden_size)

self.linear2 = nn.Linear(hidden_size, vocab_size)

def forward(self, inputs):

embedded = self.embeddings(inputs).view((1, -1))

hid = F.Linear(self.linear1(embedded))

out = self.linear2(hid)

log_probs = F.log_softmax(out)

return log_probs, hid

As you might have observed that the preceding model is

outputting the hidden representation along with the log

probabilities. This hidden representation is the crux of the

model’s learning. In Chapter 4, Using RNN for it will be very

clear that the majority of the model that is being used to

generate a character or word or sentence embedding are

having two parts in the network, namely, an encoder and a

decoder. Here, the first half of the network consists of an

input layer and weights connecting to input, and the hidden

layer is considered to be equivalent to the encoder. The later

part weight connects to the hidden and output layer, and the

output layer itself can be considered to be decoder. The crux

of learning is learned by So, in the preceding network, log

probability will be used in the training phase to converge the

network, and the hidden value is of no importance here.

Whereas in the test/inference phase, hidden weights are used

as the dense representation of the word.

Training Here, we have defined our embedding’s size as 100.

So, at the end of the training, we will get a dense vector of

size 100 for each word. This network will be trained for 10

epochs with a negative log likelihood loss function and

stochastic gradient descent optimizer as follows:

embd_size = 100

learning_rate = 0.01

n_epoch = 10

def train_cbow():

losses = []

loss_fn = nn.NLLLoss()

model = CBOW(vocab_size, embd_size, CONTEXT_SIZE,

hidden_size).to(device)

optimizer = optim.SGD(model.parameters(), lr=learning_rate)

for epoch in tqdm(range(n_epoch)):

total_loss = .0

for context, target in cbow_train:

ctx_idxs = [w2i[w] for w in context]

ctx_var = Variable(torch.LongTensor(ctx_idxs).to(device))

model.zero_grad()

log_probs, _ = model(ctx_var)

loss = loss_fn(log_probs,

Variable(torch.LongTensor([w2i[target]]).to(device)))

loss.backward()

optimizer.step()

total_loss += loss.data[0]

losses.append(total_loss)

return model, losses

Examining quality on the Ideally, one should use a left-out

portion of the dataset for the test, but in this case, I have

used the training data because this dataset is too small,

where the previously generated model will be used for the

inference. In the inference process, the vector for all unique

words in the dataset will be generated using the trained

model. Post inference, all the dense vectors are dumped to

disk for to visualize using TensorboardX as follows:

def test_cbow(test_data, model):

vector_array = []

predicted_word_array = []

correct_ct = 0

for ctx, target in test_data:

ctx_idxs = [w2i[w] for w in ctx]

ctx_var = Variable(torch.LongTensor(ctx_idxs).to(device))

model.zero_grad()

log_probs, hidden = model(ctx_var)

_, predicted = torch.max(log_probs.data, 1)

predicted_word = i2w[int(predicted[0])]

if (predicted_word not in predicted_word_array):

vector_array.append(np.array(hidden.to(‘cpu’).detach().numpy())

[0])

predicted_word_array.append(str(predicted_word))

if predicted_word == target:

correct_ct += 1

if correct_ct == 10000:

break

for visualization using tensorboardX

writer.add_embedding(torch.Tensor(vector_array),metadata=predic

ted_word_array,global_step=2)

writer.export_scalars_to_json(“all_scalars.json”)

writer.close()

To demonstrate the effectiveness of the Word2Vec techniques,

I have used a custom corpus and fed it to the Word2Vec

algorithm. This custom corpus has information from the open

domain. You may have a look at the corpus that is placed at

Finally, if we plot the 3D projection of the resulting vectors

using TensorboardX, then it will look like as follows:

Figure 3.8: Showing 2D projection of word vector learned by

using Word2Vec, showing similar word getting clustered nearby.

I have selected the word ammonia and all its probable

neighbors such as ion, resistivity, diprotic, and so on are

shown. The result was based on the basic implementation as

per the first paper of the Word2Vec. Moving ahead in the

next section, we will be discussing the improvement in

Word2Vec as published in the second part of the paper.

Word2Vec improved version

Tomas Mikolov published a second version of the Word2Vec

to introduce some of the techniques that makes training the

model easier. The publication was entitled as Distributed

Representations of Words and Phrases and their

Compositionality. These three improvements are as follow:

Sub-sampling

Combining word pairs and phrases

Negative sampling

Sub-sampling

The stop-words such as “and,” “a,” and “I” are nowhere

related to the word such as “Scientist” and do not help in

relating the context to target. Word2Vec addresses this

problem by introducing the sub-sampling techniques. Sub-

sampling can be effectively implemented by the equation

shown as follows.

Where is the probability of keeping the word, is the word,

and is the fraction of the total word. For example, if the

word “and” appears 1, 00, 000 times in 1 million words,

then = 0.1. The constant 0.001 is known as “sample,” and it

controls how much sub-sampling occurs. I have used the

following code to reproduce the meaning of the sub-sampling

approach:

def get_chances_of_being_kept(fraction):

sample = 0.001

return (math.sqrt(fraction/sample)+1)*(sample/fraction)

fractions = np.arange(0.01,1.0,0.001)

chances_of_kept = [get_chances_of_being_kept(i) for i in

fractions]

plt.title(“Chances being kept v/s Occurance in Fraction”)

x = chances_of_kept

plt.ylabel(“Chances being kept”)

plt.xlabel(“Occurance in Fraction”)

plt.plot(x, fractions);

In the following plot, the 0.05% of words in the vocabulary

are having 100% chance of being kept at the threshold of

0.05%. The plot having an exponential decay shows that a

large number of words are repeating, and a very high fraction

of words has a high number of chances being rejected as

follows:

Figure 3.9: Demonstrating Sub-sampling logic in to improve

Word2Vec

Word pairs and phrases

The author has pointed out that some word pair carries

meaning and tearing apart such phrases breaks the overall

meaning. For example, if the word New York Times, the

name of a newspaper, is broken in tokens, it will lose its

meaning. To solve this, the author recommends finding such

pairs that are having a high occurrence in the vocabulary and

considers them as a single token. Well, this seems a primitive

idea, but when Google implemented this, the 100 billion

vocabulary size decreased by 3 million words.

Negative sampling

Word2Vec has two weight matrices to tune. Let us say we

have a hidden size of 300 and a vocab size of 10000, we

have a very high number of weights attached to it to be

changed in each epoch 300*10, 000 = 30, 000, This size

becomes unimaginable when the vocab size further increases.

In this case, the network is trained by taking one positive

sample, and several negative samples are those that lie far

apart, and we want our network to give 0 output for such

words. We generally mix one positive pair with five negative

words. Now, the overall network will be trained such that

there are six words momentarily, and the loss is calculated.

So, we are updating weights for only six samples, and

(300*6) = 1, 800 weight values total. That’s only 0.06% of

the 3M weights in the output layer. This is a huge

improvement, isn’t it? Such pairs of Negative and positive

words are provided at each iteration, and it greatly reduces

the computational complexity.

Refer to the following links:

Efficient estimation of word representations in vector space:

https://arxiv.Org/abs/1301.3781

Distributed representations of words and phrases and their

compositionality: https://papers.Nips.Cc/paper/5021-distributed-

representations-of-words-and-phrases-and-their-compositionality.Pdf

Have a look at Google’s vocabulary used to train Word2Vec:

https://github.com/chrisjmccormick/inspect_word2vec/tree/master/voc

abulary

Understanding GloVe

GloVe or Global Vectors for Word Representation is another

technique to train word embeddings in an unsupervised way.

GloVe was proposed by Stanford University researchers Jeffrey

Pennington, Richard Socher, and Christopher D. Manning.

GloVe is a much more principled approach then Word2Vec.

As the GloVe is said to be much more principled, then there

must be some drawbacks in the previous approach Word2Vec.

These limitations are as follows:

As we have seen in the previous recipe, Word2Vec takes into

account only local contexts of the words. It does not take

into account global co-occurrence of the word into account.

Word2Vec is trained using the back-propagation, and hence, it

will not be able to learn embeddings of rare words correctly.

GloVe vector implementation exists to achieve two following

goals:

Creating a vector that carries meaning in vector space

Take in to account global count statistics not just local

meaning

There is a differentiating factor between GloVe and Word2Vec

implementation. Unlike Word2Vec that operates by streaming

sentences, GloVe operates by a co-occurrence matrix. In

GloVe, the loss is based on the word frequency. GloVe and

Word2Vec both are having different approaches, but often

their end results are similar. They generate vectors of similar

quality; in some cases, GloVe wins in some Word2Vec. Here,

in the following figure, we have taken window size = Here,

the scientist is the target word and are the context word.

Figure 3.10: Showing target and context words with co-occurrence

window = 2

In GloVe, we start off with building the co-occurrence matrix.

We refer the co-occurrence matrix as Such that each element

represents how many times a token i is appearing with a

token J. Such a matrix will be bilaterally asymmetric. The co-

occurrence matrix is constructed by keeping the window of

some size. Unlike SkipGram techniques, we don’t give

constant weights to all the words in the window. In GloVe,

less weight is given to the distant words. This weight change

is defined by the following formula:

Offset means the distance of context word from the target

word. As the offset increases, the decay in weight will be

proportionally more.

Defining learnable parameters

Next, is defining learnable weight and bias for each pair of

words:

+ + =

Where, are scalar biases for the main and context words.

Defining loss function

Here f is the function to prevent the influence of extremely

frequent word on the embeddings. The original authors

choose the following function to reduce the effect of such

words.

The preceding equation may seem to be confusing, but once

we plot, its meaning will be very clear. Here, a is another

constant whose value is taken 0.75 by default. The following

code can be used to demonstrate the weight function:

import matplotlib.pyplot as plt

import math

xmax = 1000

a = 0.75

weight = [min(1,math.pow(x/xmax,a)) for x in range(1,2000)]

plt.plot([x for x in range(1,2000)], weight)

plt.ylabel(“weight”)

plt.xlabel(“Xĳ”)

plt.title(“Weighting Function”)

The function looks like as follows when plotted. As shown in

the following figure, after the fragment grows beyond 1, the

weight for such tokens no more increases and applies the

same weight to all the frequent words.

Figure 3.11: Weight function to prevent the influence of extremely

frequent word on the algorithm

Defining Defining the context window 3 words left, and right

will be chosen as a context word. As this is a very small

corpus, I am defining xmax to be very small as As we are

using a very small corpus, I have kept the Embedding size as

50 only. You may try running this code with a higher

embedding size.

Set parameters

context_size = 3

embed_size = 50

xmax = 2

alpha = 0.75

batch_size = 20

l_rate = 0.001

num_epochs = 10

Data It includes reading the file, constructing vocab, counting

vocab, and constructing a word to index mapping as follows:

Open and read in text

text_file = open(‘TorchGlove/short_story.txt’, ‘r’)

text = text_file.read().lower()

text_file.close()

Create vocabulary and word lists

word_list = word_tokenize(text)

vocab = np.unique(word_list)

w_list_size = len(word_list)

vocab_size = len(vocab)

Create word to index mapping

w_to_i = {word: ind for ind, word in enumerate(vocab)}

‘‘‘

Constructing co-occurrence Weighted co-occurrence matrix is

constructed as discussed in Recipe 1 of the present chapter.

In the end, the np.nonzero returns the indices of the

elements that are non-zero. This helps in shrinking the matrix

and decreasing the main memory space occupancy as follows:

Construct co-occurence matrix

comat = np.zeros((vocab_size, vocab_size))

for i in range(w_list_size):

ind = w_to_i[word_list[i]]

for j in range(1, context_size + 1):

if i - j > 0:

lind = w_to_i[word_list[i - j]]

comat[ind, lind] += 1.0 / j

if i + j < w_list_size:

rind = w_to_i[word_list[i + j]]

comat[ind, rind] += 1.0 / j

Non-zero co-occurrences

coocs = np.transpose(np.nonzero(comat))

Many important components

A weight function as discussed previously that helps in

dealing with stop words/Words that are encountered more

often and may diverge the model building

Weight and bias Weight and bias are initialized with the

normal distribution. These parameters will change throughout

the training and will be holding a crux of the learning. The

weight matrix will be of size embedding_size * vocabulary The

bias will be of a size equal to the vocabulary size.

Here, we are using the Adam optimizer to train the model.

Weight function

def weight_function(x):

if x < xmax:

return (x/xmax)**alpha

return 1

Set up word vectors and biases

left_embed, right_embed =

[[Variable(torch.from_numpy(np.random.normal(0, 0.01,

(embed_size, 1))),

requires_grad = True) for j in range(vocab_size)] for i in

range(2)]

left_biases, right_biases =

[[Variable(torch.from_numpy(np.random.normal(0, 0.01, 1)),

requires_grad = True) for j in range(vocab_size)] for i in

range(2)]

Set up optimizer

optimizer = optim.Adam(left_embed + right_embed +

left_biases + right_biases, lr = l_rate)

PyTorch is very flexible and allows you to define your own

architecture with different trainable weights and bias. As

shown in the preceding code, you can add your custom

parameters to optimizers so that the optimizer considers it as

a trainable parameter and considers them in the back

propagation graph.

Train the GloVe This function iteratively takes data from

gen_batch function. Loss is calculated and back propagated to

adjust the weights/bias with Adam.

Train model

for epoch in range(num_epochs):

num_batches = int(w_list_size/batch_size)

avg_loss = 0.0

for batch in range(num_batches):

optimizer.zero_grad()

l_vecs, r_vecs, covals, l_v_bias, r_v_bias = gen_batch()

loss = sum([torch.mul((torch.dot(l_vecs[i].view(-1),

r_vecs[i].view(-1)) + l_v_bias[i] + r_v_bias[i] -

np.log(covals[i]))**2,weight_function(covals[i])) for i in

range(batch_size)])

avg_loss += loss.data[0]/num_batches

loss.backward()

optimizer.step()

print(“Average loss for epoch “+str(epoch+1)+”: “, avg_loss)

Here again, I am using TensorBoard to visualize our dense

vectors generated by GloVe.

word_array = []

embed_array = []

word_inds = np.random.choice(np.arange(len(vocab)), size=100,

replace=False)

for word_ind in word_inds:

w_embed = (left_embed[word_ind].data +

right_embed[word_ind].data).numpy()

word_array.append(vocab[word_ind])

embed_array.append(torch.transpose(torch.Tensor(w_embed),0,

1).numpy())

writer.add_embedding(np.asarray(embed_array).reshape(-1,50),

word_array)

writer.export_scalars_to_json(“./all_scalars.json”)

writer.close()

To demonstrate the effectiveness of our GloVe implementation,

I will be using the same corpus as used to demonstrate the

effectiveness of Word2Vec. This corpus can be found at When

plotted, such vectors looks like as follows:

Figure 3.12: Showing 2D projection of word vector learned by

using GloVe, showing similar word getting clustered nearby.

I have selected a word principle and all its probable

neighbors such as and so on, as shown in the preceding

figure. I have run the algorithm for 10 epochs and received

these results; you may try with higher epochs.

Word vector so made with Word2Vec or GloVe needs to be

evaluated. Evaluation of such vectors can be made by the

following techniques:

Intrinsic Word pair are manually scored with the same dataset

with which the training was done. This score is then matched

with the cosine similarity score provided between word vector

pairs generated by GloVe. The minimum is the difference

between the two scores, the better is the word vector.

Extrinsic Word vector so made are used in various tasks.

Performance of word vector is measured on such tasks and

compared with the previous state of the art word

embeddings. To perform extrinsic evaluation various standard

datasets are used, such as CoLA, SST-2, MRPC, STS-B, QQP,

MNLI-m, and so on. The overall score is calculated on as per

the glue benchmark and the rank of embedding is

determined.

Please refer to the following links for more details:

GloVe: Global vectors for word Representation:

https://nlp.stanford.edu/projects/glove/

A survey of word embeddings evaluation:

https://arxiv.org/pdf/1801.09536.pdf

A survey of word embeddings evaluation methods:

https://arxiv.Org/abs/1801.09536

Understanding character-based embedding

So far, we have seen that the embeddings are constructed

using the word-based features. Word-based features are

excellent but not efficient in many ways. Going a little deeper

can provide us another dimension to train the vectors.

Character-based embeddings are constructed using character

n-gram as a feature. Xiang Zhang and Yann LeCun realized

the potential of character-based embedding in their paper

published in 2016. In this work, they conclude that the

character-based features work better than the word-based

features. A similar conclusion is derived from Googles paper

entitled Exploring the Limits of Language The main advantages

with character-based embedding are as follows:

You can better handle emoticons, new words, and misspelling

words.

Character-based embeddings are better at handling rare-words.

Word2Vec do not do better justice at rare words.

In character-based embeddings, it applies softmax on the

vector of dimension equal to the unique character in

vocabulary. On the other hand, word-based embedding needs

to apply softmax on the vector of dimension equal to unique

words. As the character set will be always smaller than the

word set, character-based embeddings are computationally less

expensive.

Vectors can be formed if the word was not present while

training the model.

Learning character embeddings can be summarized in the

following steps:

Define a list of the character, including English characters,

numeric characters, and special characters

Represent each character into on hot encoding, keeping empty

vector for blank for unknown characters and spaces. Take one

hot encoding for defined max length of the word if the word

exceeds the max length, then chop-out extra character or pad

with the blank token if smaller.

Use three 1D CNN layers (configurable) to learn the sequence

Similar to Word2Vec, the FastText can also be trained using

SkipGram or CBOW approach.

Character embedding is a brilliant way that takes care of an

unknown word as long as the word contains a character

considered while building the model. FastText is the state-of-

the-art charter-based model developed and pushed to the

community by Facebook AI Research FAIR went one step

ahead and included sub-word information such as Facebook

word can have “F”, “Fa”, “Fac” and so on as sub word to

train the word. To demonstrate the charter-based embeddings

techniques, I will be using FastText module in python.

FastText can be imported in the following ways:

import fasttext

Character-based embedding generation

One can use FastText to train the model either by CBOW or

by SkipGram. To demonstrate the effectiveness of our

FastText, I will be using the same corpus as used to

demonstrate the effectiveness of Word2Vec and GloVe. This

corpus can be found at

import fasttext

from tensorboardX import SummaryWriter

import numpy as np

writer = SummaryWriter()

Skipgram model

model = fasttext.skipgram(‘data/testdata_en.txt’, ‘model’)

words = model.words # list of words in dictionary

print (“words present in the model : “, words)

#visualizing using tensorboard

all_vectors = []

for eachword in words:

all_vectors.append(model[eachword])

writer.add_embedding(np.asarray(all_vectors), words)

writer.export_scalars_to_json(“./all_scalars.json”)

writer.close()

I have applied code from Here first the model is built using

Fasttext. Following screenshot is the 2D projection of resultant

vectors:

Figure 3.13: Showing 2D projection of word vector learned by

using Fasttext, showing similar word getting clustered nearby.

FastText can also be used for the supervised text classification

task. To demonstrate this capability, I will be using SMS

spam collection dataset.

FastText requires a particular format to perform a supervised

classification. The text must be formatted as: __label__ Where

__label__ is an identifier followed by an actual label (in our

case, it is either spam or ham). Then followed by some

spaces, the text is provided on which the classification is to

be done. The following are few lines from the dataset to give

you a clear idea about the dataset.

Free entry in 2 a weekly comp to win FA Cup final tickets

21st May 2005. Text FA to 87121 to receive entry question

(std txt rate) T&C’s apply 08452810075over18’s.

I can’t believe how attached I am to seeing you every day. I

know you will do the best you can to get to me, babe. I will

go.

I have divided the SMS spam collection data set into two

parts, namely, train and test. This dataset can be found under

Ch3/dataset folder. To classify, the following steps are needed

to be performed:

import fasttext

train classifier

classifier = fasttext.supervised(‘data/SMSSpamCollection.train’,

‘model’)

check performance on test

result = classifier.test(‘data/SMSSpamCollection.test’)

print (‘Precision:’, result.precision)

print (‘Recall:’, result.recall)

print (‘Number of examples:’, result.nexamples)

Precision: 0.9760239760239761

Recall: 0.9760239760239761

Number of examples: 1001

In our case, with a very small dataset, it provided close to

95% precision and recall on the test dataset. FastText is an

extremely handy and powerful algorithm. Fasttext can be used

to quickly prototype an application.

One need not build the Fasttext vectors every-time from

scratch. You can download Fasttext vector trained on

Wikipedia and common crawl from here This site has FastText

vector available in 157 languages. This site also has the pre-

trained model on various open source datasets such as ag

news, Amazon review full, Amazon review polarity, DBpedia,

Sogou news, yahoo answers, yelp review polarity, and yelp

review full. These models can serve as a good starting point

for training your text classifier. You may take one of the

relevant models and fine tune your own dataset to see if you

can get a better model with a fewer data.

The following are the references:

Text understanding from Scratch:

https://arxiv.org/pdf/1502.01710v5.pdf

SMS spam collection data set:

https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

Conclusion

This chapter is of paramount importance in the entire book.

Almost all your natural language processing pipeline will need

to use the techniques discussed and demonstrated in this

chapter. It is one of the biggest areas of research in the

domain of NLP. We started with the understanding of the

very first state the art word-based model Word2Vec. Word2Vec

laid down the path forward on how the shallower perceptron

model can be used to generate the uncompressed language

representation.

Earlier, the embeddings were generated using the

mathematical techniques like TF-IDF with or without

techniques like PCA and SVD. Nowadays, research focusses

on the deeper model for embedding generations like Bert and

Elmo. We also realized the problem with the word-based

model and the potential advantages of character and

contextual models.

In the next chapter, we will be learning about using RNN for

NPL.

CHAPTER 4

Using RNN for NLP

This chapter is the most important in this book. It covers the

most-used and required techniques like vanilla recurrent neural

network, gated recurrent units, and long short-term memories.

This chapter covers how to use pre-trained embeddings or

train embeddings from scratch. The difference in accuracy

when the same task is carried out by different RNN units like

Vanilla RNN, GRU, and LSTM is explored by implementing a

network from scratch. This chapter also covers sequence to

sequence learning tasks that have been extensively used in

application like language translation and text summarization.

We will also use batching with the sequence to sequence to

process a batch of examples simultaneously for higher speed

and better convergence. This chapter will also take you

through the most important topics used in all recent NLP-

related tasks.

Structure

The following topics will be covered in this chapter:

Understanding recurrent units

Implementing the concept of embeddings

Understanding advance RNN units

Understanding and implementing GRU

Understanding the sequence to sequence model

Understanding batching with Seq2Seq

Translating in batching with Seq2Seq

Implementing attention for language translation

Objective

Using RNN for sequence processing and understanding the

concept of vanilla RNN. Practically understanding which one

is better: GRU or LSTM. Although there are sub-libraries in

Pytorch that have already implemented ready-to-go LSTMs, we

will implement one from scratch.

Understanding how batch processing with sequence works and

applying the same in implementing attention networks.

Implementing a simple seq-to-seq model with and without

batching.

Using highways to build deeper architecture.

Understanding the Transformer - how holy grail of the

sequence to sequence learning works.

Learning to use contextual embedding and implementing the

concept of highways in the deeper network.

Pre-requisites

The code for this chapter can be found in the Ch4 folder at

GitHub repository This chapter requires the following packages

to be installed to execute the code:

Nltk

Pandas

Torch

Numpy

Matplotlib

Tqdm

Torchtext

You can install these requirements by installing all the

packages listed in requirements.txt by simply issuing pip

install -r

This chapter uses Ipython Notebook/ Jupyter Notebook for easy

execution and connecting thoughts with the implementation.

This chapter onward, we will use medium-size dataset and

GPUs for processing. GPU is alternative computer hardware

with hundreds to thousands of computing cores. GPU

provides great speed, so multiple experiments can be carried

out in a small amount of time. If you don’t have GPU

hardware, don’t worry. You can use free GPUs available at

Google Collaboratory (https://colab.research.google.com). Google

Collaboratory provides free GPUs and TPUs to run

experiments. You can simply clone this book’s repository to

Google Collab and start experimenting on the code provided.

Understanding Recurrent Units

In the previous chapter, we look at the implementation of

GloVe and Word2Vec. Both utilize a feed-forward network to

train the model, wherein there is no relationship mapping

between the current and the previous input. Feed-forward

network architecture is good but cannot be used to solve all

kinds of tasks. This recipe is all about understanding the

concept of RNN. You are already using applications with

recurrent units in your daily life on your mobile. RNN powers

the type-ahead feature in your keyboard. Most voice-assisted

systems like Google and Alexa use some advanced form of

RNN.

To illustrate the use of RNN, let me walk you through one of

the examples. Let’s say you want to find the sentiment of the

given sentence using a feed-forward network. To do this, the

logical steps to be followed are as listed:

Split the sentence into words (let’s say we have 10 words)

Get dense vector for each word (let’s say we have 100-

dimensional vector)

Pass it to neural network

The nature of the problem is sequential, and passing each

word to the feed-forward network will not perform as in FNN;

there is no mapping of the relation between two words, and

there is no mechanism by which it can give you sentiment

based on the entire sentence. Passing the entire sentence

instead of words seems to be a choice, but it’s an expensive

choice for 10 words, each word with a 100-dimensional vector

that, when combined, make 10000 (10100) as the input

feature size. If the second layer in the feed-forward network

has half the perceptron, then the input (i.e.5000), the weight

matrix between two will be of [10000, 5000] dimension. It is

a huge matrix to train. To solve this problem and establish

the relationship the between previous and current input, a

different type of architecture is required, which is known as

RNN.

Nowadays, RNN refers to the group of techniques, including

Vanilla RNN, GRU, and LSTM. Vanilla RNN is the simplest

form of RNN that suffers from many shortcomings. One of

them is vanishing gradient, which we will discuss in detail in

the upcoming topics. Nowadays, Vanilla RNN and RNN are

used interchangeably. This recipe is most precisely about

Vanilla RNN.

The RNN structure is derived from the FNN, but it has

internal loops. The typical FNN with a single input, single

output, and single hidden perceptron in the hidden layer can

be visualized as given below. RNN has the concept of

sequential or internal memory. It has a mechanism to store

information related to previous outputs. The FNN with

recurrent component described earlier looks like the following

diagram:

Figure 4.1: RNN in the rolled form.

As shown in the figure, the RNN has the looping mechanism

to act as a highway between the previous and current

information. This highway between the previous and the

current information is known as the hidden state of the RNN.

Moving ahead with our earlier example, let’s say we have a

movie review as had a terrible Let’s see how RNN will help

here. RNN kind of netwrorks will eventually help predict the

sentiment of the review. A unit with the random hidden state

is fed with the word the unit gives out output and hidden

state. The updated hidden state so produces passed to the

next unit. This hidden state is combined with previous

learning and current learning. The word ‘was’ again influences

this hidden state and gives out updated hidden state and

output. At the end of all the words, the hidden state will

hold crux of the feedback, and one can classify this sentence

as positive or negative with it.

Rolling and Unrolling

To understand the RNN, figure 4.1 shows that there are

individual units for each word. The above-shown units are

only one unit, but its unrolling is shown in the next figure

for better understanding. In reality, it is only one unit that

takes input and gives output and hidden state. The hidden

state is also utilized in the next step, and this continues until

the end of the sequence. The unrolling of the same network

is shown as follows:

Figure 4.2: RNN in an unrolled form.

RNN unit unrolled from time t = t = 0 to time t = In RNN,

each input is referred to as a time step. In our example,

each word can be referred to as a time step. Time steps are

generally given as t + 1, t + 2,…, t + t + 1, t + + Here, n is

the total number of time-steps. In the forward pass, we move

forward with each time step, and we perform through or

BPTT in the backward pass. BPTT seems to be the fancy

name for a method to backpropagate gradient while training

RNN. The comprehensive network with all the associated

weights and hidden layers can be given as follows:

Figure 4.3: Mathematical details regarding how RNN functions.

The basic equation for RNN can be given as:

= + + +

–

Where is the hidden state at the time t, is the hidden state

of the previous layer at a time or the initial hidden state at a

time t = 0, and is the input at a time Also, is the weight

from input to hidden, is the weight from previously hidden to

current hidden, and and are bias to input and hidden,

respectively.

Implementing RNN in PyTorch is very easy. PyTorch takes care

of many abstractions related to implementing and initializing

weights. The RNN function requires three parameters:

The number of expected features in input

The number of features in the hidden state

The number of recurrent layers. For example, num_layers=2

would mean stacking two RNNs in layers together to form a

stacked RNN. The second layer of RNN derives input from

the first layer.

The shape of the RNN input is [batch_size, max_time_steps,

Let’s say we are dealing with sentiment analysis tasks. To

make the dimension of the input the same, we assume that

one sentence can have a maximum of 20 words. Padding is

applied if the sentence is smaller, and longer sentences are

truncated to make the word size 20. Each word has 100-

dimensional embeddings. Each batch has 64 sentences, so

the resultant shape of input would be [64, 10, Here, 10 is

our max time step. You can simply initialize an RNN, as

given below. The hidden unit shape in all the RNN units is

[number of layers*directions, batch_size, Here, the number of

layers represents how many layers of RNN are stacked on top

of each other, and direction represents whether the RNN is

unidirectional or bidirectional. Let’s say I have bidirectional

RNN with three layers having the same batch size and 100

dimensions; then, the hidden shape will be [2*3, 64,

import torch

rnn = torch.nn.RNN(10, 20, 2) input = torch.randn(5, 3, 10)

h0 = torch.randn(2, 3, 20) output, hn = rnn(input, h0)

>>>torch.Size([5, 3, 20]) #output

Consider the preceding diagram of hidden state; as the

sequence elongates, the influence of early time steps

decreases and eventually becomes zero. RNN is unable to

remember longer sequences due to this problem. This

phenomenon with RNN is known as Short-Term We will

discuss the root cause of and the solution to this problem in

the upcoming topics.

You can learn more on the fundamentals of the Recurrent

Neural Network and Long Short-Term memory network at

Implementing the Concept of Embeddings

We generated embeddings based on words and characters in

the previous chapter. The help of embeddings is not limited

to just providing a numerical output of the token. Embedding

is the way to transfer learning in natural language processing.

In image processing, the concept of transfer learning is quite

mature and is getting stronger for NLP. In this recipe, I will

demonstrate how embeddings can help in training. We’ll take

an example to illustrate how transfer learning can help. Let’s

say Tom stays in the USA and is a native English speaker.

He has got an internship opportunity in France and will be

traveling after 3 months. Tom does not know French; he was

smart, so he started listening to the French radio channel for

3 months. Although he could not understand anything initially,

his brain started making sense of the language gradually. By

the time he reached France, he had somewhat pre-trained his

brain. Now, this low-level understanding of the French

language helped him learn it faster. It is similar to how

embeddings work. Embeddings are formed by forcing the

network to learn from context. These learnings are passed to

RNN Like network; which can learn that rather than learning

from scratch.

As discussed in the recipe related to pre-trained embeddings

are available and can be easily used in our model. I have

found a module on GitHub that lets you easily download the

required embeddings. This package is known as Chakin and is

a simple downloader for pre-trained word vectors. You can

install Chakin using pip, and you can use it as follows:

import chakin

chakin.search(lang=’English’) # this will list all

availanbleembeddigs

availanbleembeddigs availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

availanbleembeddigs

Table 4.1

You can select any of the vectors to be used in your training

pipeline:

chakin.download(number=2, save_dir=’./’) # select fastText(en)

From this chapter onward, we will use the popular

regularization technique - Dropout. Most of today’s deep

learning implementations use dropout. As the name suggests,

it drops the percentage of connection between two layers

randomly. This can be diagrammatically shown as follows:

Figure 4.4: A network diagram A. Without dropout B. With

Dropout.

As shown, all layers remain fully connected to the previous

and next layers in the normal network. The dropout drops the

connection randomly between these layers as per the defined

percentage. If the dropout percentage/probability defined is

0.2, 20% of the connection will be dropped. This dropping of

connection occurs at each iteration and induces variability in

the graph. Due to this variability, the network does not rely

on strong and biased features and tries to generalize based

on weaker features as well. This is how dropout is helpful in

better generalization.

Downloading Dataset

To demonstrate how embeddings can help, we will experiment

with sentiment analysis tasks. I have used a movie review

dataset with 5331 positive and 5331 negative processed

sentences. The entire experiment is divided into five sections.

The dataset is available at

Pre-processing

I am using TorchText to preprocess the downloaded data. Pre-

processing includes following steps:

Reading and parsing data

Defining sentiment and label fields

Dividing data into train, valid, and test subsets

Downloading embedding

Forming the train, valid, and test iterators

Training

Training will be conducted for two models, one with no pre-

trained embedding and one with FastText embeddings. I am

using FastText embeddings trained on Wikipedia corpus for 1

billion words with a vector size of 300. The network with no

pre-trained embeddings can be defined as follows:

class SCRATCH_RNN(nn.Module):

def __init__(self, vocab_size, embedding_dim, hidden_dim,

output_dim, n_layers, bidirectional, dropout, sentiment_vocab):

super(SCRATCH_RNN, self).__init__()

self.embedding = nn.Embedding(vocab_size, embedding_dim)

self.rnn = nn.RNN(embedding_dim, hidden_dim,

num_layers=n_layers, birectional=bidirectional, dropout=dropout)

self.fc = nn.Linear(hidden_dim * 2, output_dim)

self.dropout = nn.Dropout(dropout)

def forward(self, x):

embedded = self.dropout(self.embedding(x))

output, hidden = self.rnn(embedded)

concat the final forward (hidden[-2,:,:]) and backward

(hidden[-1,:,:]) hidden layers

and apply dropout

hidden = self.dropout(torch.cat((hidden[-2, :, :], hidden[-1, :, :]),

dim=1))

return torch.softmax(self.fc(hidden.squeeze(0)),dim = 1)

The SCRATCH_RNN class builds embeddings from scratch

using the torch embedding function. The Embedding function

is very frequently used to store word embeddings and retrieve

them using indices. The input to the module is a list of

indices, and the output is the corresponding word

embeddings. Parameters of the embeddings functions are

trainable, so the weights change constantly throughout training

and help generate better word vectors. Such embedding

vectors are passed to the RNN function to get hidden and

output tensor. The hidden tensor has the crux of the learning,

so the hidden output is passed through a linear

transformation. After the application of softmax, the predicted

output is calculated.

The other network is one where we are passing pre-trained

embeddings. This network looks like the previous one, except

for the change in one line, as indicated in bold:

class FT_RNN(nn.Module):

def __init__(self, vocab_size, embedding_dim, hidden_dim,

output_dim, n_layers, bidirectional, dropout, sentiment_vocab):

super(GLOVE_RNN, self).__init__()

self.embedding = nn.Embedding(vocab_size, 300)

self.embedding.weight.data.copy_(sentiment_vocab.vectors)

self.embedding.weight.requires_grad = True

self.rnn = nn.RNN(embedding_dim, hidden_dim,

num_layers=n_layers, bidirectional=bidirectional,

dropout=dropout)

self.fc = nn.Linear(hidden_dim * 2, output_dim)

self.dropout = nn.Dropout(dropout)

def forward(self, x)

embedded = self.dropout(self.embedding(x))

output, hidden = self.rnn(embedded)

concat the final forward (hidden[-2,:,:]) and backward

(hidden[-1,:,:]) hidden layers

and apply dropout

hidden = self.dropout(torch.cat((hidden[-2, :, :], hidden[-1, :, :]),

dim=1))

return self.fc(hidden.squeeze(0))

The changed line (as highlighted above) copies pre-trained

vectors from the loaded FastText model vectors. So, in the

FT_RNN class, we are not training the embeddings from

scratch. I allowed to train this network for 100 epochs and

plotted the accuracy progress of both models. The plot is as

follows:

Figure 4.5: Difference in accuracy when embeddings are trained

from scratch and when pretrained FastText embeddings are used.

It is very clear that pre-trained embeddings help in learning.

Training from scratch resulted in ~70% accuracy, whereas

training using FastText embeddings provided 88% accuracy.

In the preceding network, I am reporting accuracy only on the

train data. The entire code has both tests, and validation

partitions are available. As part of the exercise, you can try

with the following changes in the network to reinforce your

learning:

Try with different embeddings and note the change in

accuracy/ loss.

Try with different datasets to see whether the trend differs by

the change in the dataset (different datasets are provided

along with TorchText in

Check the accuracy by iterations on validation and test data

Refer to the following reference links:

A simple way to prevent neural networks from overfitting:

https://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

downloader for pre-trained word vectors:

https://github.Com/chakki-Works/chakin

Movie review www.cs.cornell.edu/people/pabo/movie-Review-Data/

Understanding Advance RNN Units

In the previous chapter, we discussed basic RNN or Elman

RNN or vanilla RNN units. Vanilla RNN units have some

shortcomings, so we will discuss some of the advanced RNN

units, like LSTM and Gated Recurrent Units in this chapter.

The following image looks familiar; it is the hidden tensor

representation we have used in recipe 1 while understanding

RNN units:

Figure 4.6: An Illustration of the vanishing gradient problem.

The color bar below the hidden state indicates the

information content of the hidden state. As the hidden state

sees more and more tokens, it is influenced by all and stores

information about those tokens. One more thing to see is

that as the hidden state moves forward, it tends to forget

information about the token seen in the previous time steps.

This hidden state has a problem. As you can see, as the

sequence elongates, the contribution of the very first time

step input becomes zero or deleted. When BPTT is applied to

such networks, the gradient for those early time steps is not

calculated, and learning to the weights is not imparted. If I

show you the same thing in the unrolled version of RNN, the

gradient decreases while backpropagation and eventually

vanishes.

To solve this problem, Jürgen Schmidhuber coworker in 1997

proposed LSTM. In this chapter, we will discuss LSTM in

detail.

Gating Mechanism in LSTM

LSTM units have a very intuitive structure. It has two internal

states, whereas vanilla RNN has only one hidden state. The

cell state in LSTM is like a conveyor belt that runs on the

top of the unit, as shown in the following diagram. The cell

state is highly regulated by the gates attached to it, and

these gates are the way to let the information through. LSTM

has three gates to control the information flow.

Figure 4.7: The various gates present in LSTM.

Forget It regulates the information flow. A sigmoid gate looks

at the input and previous hidden state The sigmoid output

value of 1 means let everything go through, and 0 means

nothing should get through:

= +

To keep or not is gradually learned by the weights and bias

attached to the forget gate.

Input Next is the input gate that decides what information we

will keep in the cell state. The input gate has two inputs: one

is controlled by sigmoid, and another is controlled by The

following equations define the input gate:

= • +

C̃ t = • +

Output It decides what information to let through according

to the cell state and hidden state. A sigmoid gate decides

what information from the hidden state goes to the output,

and tanh decides what information from the cell state goes to

the output gate. The output gate can be mathematically

represented as follows:

= • +

= *

The information controlled by this gate then merges into the

cell state, as shown in the following equation:

= ° + °

LSTM can be easily implemented using PyTorch. PyTorch has

an LSTM function, which takes a similar input shape as

described in the case of vanilla RNN. It can be used as

follows:

rnn = nn.LSTM(15, 25, 2)

input = torch.randn(5, 3, 15) h0 = torch.randn(2, 3, 25)

c0 = torch.randn(2, 3, 25)

output, (hn, cn) = rnn(input, (h0, c0))

The cell’s state and hidden state are taken along with the

input by LSTM, and these two will always be of the same

shape.

In theory, LSTM seems to be a jaguar; let’s test it on the

ground. Here, to prove the effectiveness of the LSTM, I am

using the same dataset, pre-processing the pipeline, Vanilla

RNN, as in the previous recipe. The only thing new is the

use of LSTM. The modified function looks like the following:

class LSTM_RNN(nn.Module):

def __init__(self, vocab_size, embedding_dim, hidden_dim,

output_dim, n_layers, bidirectional, dropout, sentiment_vocab):

super(LSTM_RNN, self).__init__()

self.embedding = nn.Embedding(vocab_size, embedding_dim)

self.rnn = nn.LSTM(embedding_dim, hidden_dim,

num_layers=n_layers, bidirectional=bidirectional,

dropout=dropout)

self.fc = nn.Linear(hidden_dim * 2, output_dim)

self.dropout = nn.Dropout(dropout)

def forward(self, x):

embedded = self.dropout(self.embedding(x))

output, (hidden, cell)= self.rnn(embedded)

concat the final forward (hidden[-2,:,:]) and backward

(hidden[-1,:,:]) hidden layers

and apply dropout

hidden = self.dropout(torch.cat((hidden[-2, :, :], hidden[-1, :, :]),

dim=1))

return self.fc(hidden.squeeze(0))

When the sentiment analysis test was run for 100 epochs, I

found LSTM’s performance recommendable.

Figure 4.8: Difference between accuracy when LSTM and RNN

are used for text classification.

The accuracy of train data was over 95% with LSTM and was

around 70% with RNN. The complete implementation with

supporting code is given at

Modified LSTM Units

After the success of LSTM, many researchers came up with

its variants. Here, we will briefly discuss two of the variants,

as shown in the following diagrams:

Figure 4.9: LSTM variants designed by making extra connections

between various gates.

Figure A was designed by Gers &Schmidhuber (2000) and has

a peephole whereby the sigmoid layer can see the cell state.

In figure B, a connection is added between the forgetting and

input gate. The intuition is to let them forget, and input

decides what to let go and what to add. There are several

such variations, and many perform great in some tasks.

Discussing the variants may provide an additional intuition

and broaden your vision about LSTM. In the preceding

experiment, I am reporting accuracy on the train data only.

The entire code has both tests, and validation partitions are

available. As part of the exercise, you can try making the

following changes in the network to reinforce your learning:

Try with different datasets to see if the trend differs by a

change in the dataset (different datasets are provided along

with torchtext in

Check the accuracy by iterations on validation and test data

Take a look at the following links for more details:

Recurrent nets that time and count:

ftp://ftp.idsia.ch/pub/juergen/TimeCount-ĲCNN2000.pdf

Depth-gated recurrent neural networks:

https://arxiv.org/pdf/1508.03790v2.pdf

Understanding and Implementing GRU

In the experimentation carried out in the previous recipe, the

gating mechanism can be a solution to achieve state-of-the-art

results and alleviate the problem of vanishing gradients. Gated

Recurrent Units are also inspired by the design of LSTM.

Gated recurrent units were published in 2014 by Cho et in a

research paper named Learning Phrase Representations using

RNN Encoder-Decoder for statistical machine translation.

As we had gated in LSTM, GRU has two gates: update and

reset gate. These two gates decide what information should

be discarded and what information should be passed through.

Learnable parameters in these two gates can be trained to

change the information content and make continuous updates.

The flow diagram for GRU looks like this:

Figure 4.10: Detailed structure of the GRU unit.

The four gates functions are as follows:

Update This gate can be given by the following formula:

= +

Here, the input is multiplied by its weight, and the previously

hidden tensor that carries the information of the previous t -

1 is multiplied by its weight. Then, sigmoid squashes them

into a number between 1 and 0. The update gate determines

how much past information to let go of the present time

step. This gate helps solve the vanishing gradient problem. If

the value of the sigmoid gate is 1, all the information is

preserved to solve the vanishing gradient problem.

Reset This gate helps determine how much information must

be forgotten from the previous time steps:

= +

This equation seems to be very similar to the previous one,

and the only difference is that the weights are for the reset

gate. Next is to use these gates to determine the current

memory content and final memory at the end of the output.

Current memory This derives the current memory content

using the reset gate value and the current input value. As

discussed earlier, the reset gate knows how much information

to forget and has a number between 0 and 1. If is zero, the

input information contained in the current time step will be

completely ignored, and if it is one, the information in the

current input will be taken into cell state. The current

memory content is calculated as shown here:

Taking the Hadamard product of reset gate value and the

previous hidden state with its weight

Summing up the value with of

= + ʘ

Final memory at the current time Final memory is constructed

by taking the help of the update gates result and the current

memory content. The last memory is formed using the

following steps:

Taking Hadamard product of the update gate value and

Taking Hadamard product of 1 – and the current memory

content

Summing up these two values:

= ʘ + (1 – ʘ

GRU with PyTorch

Now, it’s time to implement GRU using PyTorch. The usage

is very similar to LSTM and vanilla RNN. The GRU function

takes three arguments:

The number of expected features in the input x.

The number of features in the hidden state h.

The number of recurrent layers. For example, setting

num_layers=2 would mean stacking two GRUs together to

form a stacked GRU, with the second GRU taking in outputs

of the first and computing the final results. Default: 1

rnn = nn.GRU(10, 20, 2) input = torch.randn(5, 3, 10)

h0 = torch.randn(2, 3, 20)

output, hn = rnn(input, h0)

One thing to note here is that the GRU uses only one

hidden state to deal with the vanishing gradient problem,

whereas the LSTM uses two hidden states. As a result, GRU

is a bit faster than LSTM. Let’s look at their performance on

the movie review dataset. The complete implementation to

compare the performance of GRU and LSTM is provided at

Figure 4.11: Difference between the accuracy of LSTM and GRU

on the text classification task.

As shown, LSTM produces 95% accuracy, and GRU produces

85% performance. However, this wasn’t the case for all

datasets; GRU’s performance was also found to be superior in

some cases.

In the preceding experiment, I am reporting accuracy on the

train data only. The entire code has both tests, and validation

partitions are available. As part of the exercise, you can try

making the following changes in the network to reinforce your

learning:

Try with different embeddings to see if any significant

difference is noted

Try with different datasets to see whether the trend differs by

the change in the dataset (different datasets are provided

along with torchtext in

Check the accuracy by iterations on validation and test data

Take a look at the following references:

Learning phrase representations using RNN encoder-decoder

for statistical machine translation:

https://arxiv.Org/pdf/1406.1078v3.Pdf

Empirical evaluation of gated recurrent neural networks on

sequence modeling: https://arxiv.Org/pdf/1412.3555v1.Pdf

Understanding the Sequence to Sequence Model

The sequence to sequence model is the most researched area

in the era of modern NLP. It is a one-size-fits-all kind of

algorithm used in all the following tasks:

Machine translation

Summarization

Question answering

Chat-bot

Text simplification

Speech to text

Text to speech

In this recipe, we will start with general sequence to

sequence architecture. One by one, we will implement GRU

encoder-decoder, batching with encoder-decoder, and batch

processing with attention. We will discuss this implementation

by tightly integrating algorithms, equations, and code. The

discussion in the upcoming recipe forms the base of modern

NLP techniques. To give you an idea of how to do text

processing from scratch, I am not using TorchText in these

topics. The sequence to sequence network contains two parts:

an encoder and a decoder. The encoder takes the given input

and converts it into fixed-size hidden representation. This

hidden representation is converted to output by a decoder. An

encoder takes input sequence and passes it through the

Embedding which converts words into a fixed-size vector. This

Embedding Layer is trainable and is trained along with the

encoder and decoder.

Before going into details about the algorithm, we must know

a few operations to help us understand the sequence to

sequence block easily.

Unsqueeze inserts singleton dim at the position given as a

parameter. Insert a new axis that will appear at the axis

position in the expanded array shape:

input = torch.Tensor(2, 4, 3) # input: 2 x 4 x 3

print(input.unsqueeze(0).size())

>>>torch.Size([1, 2, 4, 3])

This returns a tensor with all the dimensions of input of size

one removed. For example, if the input is of shape:

(A×1×B×C×1×D), the out tensor will be of shape: (A×B×C×D).

This operation is often used to reshape the tensor to fit the

required input size or facilitate matrix operations:

x = torch.zeros(2, 1, 2, 1, 2)

y = torch.squeeze(x)

y.size()

>>>torch.Size([2, 2, 2])

Used to** **Interchange different axes of the tensor:

x = torch.randn(2, 3, 5)

torch.Size([2, 3, 5])

print(x.permute(2, 0, 1).size())

>>>torch.Size([5, 2, 3])

Log Soft-max applies logarithm after soft-max

Returns the top k-largest elements of the given input tensor

along a given dimension. If dim is not given, the last

dimension of the input is chosen. By default, largest is True,

but the k smallest elements are returned if it is A list of

(values, indices) is returned, where the indices are those of

the elements in the original input tensor:

x = torch.arange(1., 10.) #tensor([1., 2., 3., 4., 5.])

top_value, top_index = torch.topk(x, 3)

print(top_value, top_index)

>>> tensor([9., 8., 7.]) tensor([8, 7, 6])

For the sake of simplicity, I am using GRU in this recipe.

The sequence to sequence architecture has three essential

components: an encoder, a decoder, and a context vector. The

following is a detailed diagram of the sequence to sequence

architecture:

Figure 4.12: Encoder-decoder architecture while training,

For the sake of simplicity, we will take two sentences: one in

French and another in English. The task is to convert the

French sentence/source sentence to the English

sentence/target sentence:

French sentence/ source sentence - mon nom est Sunil

English sentence/target sentence - my name is Sunil

As shown in the preceding diagram, each word is in the form

of embedded representation and passed to GRU. GRU also

takes a first encoder hidden state as the input. All words of

the input sentence are passed sequentially to GRU so that it

takes a word and a hidden state of the previous state as

input and gives one output and updated hidden state. For

now, I will ignore the encoder outputs shown by the symbol.

Encoder and decoder hidden states are represented by the

dotted blue arrow throughout. The embedding representation

formed from the input is shown in pink color.

After the encoder phase has finished, we have a final encoder

hidden state as output. This final encoder hidden state is of

value, and it is estimated that as it has seen all the words of

the sequence, it will have information regarding the entire

sequence. This encoder hidden state is passed to decoder as

the first hidden state. This final hidden state is also known

as the context vector, which is then passed to the decoder.

Usually, the decoder does not know anything initially, but

vector provides it with lots of information about the source

sequence by a context. The first unit of the decoder is

awakened with the or token as input and a context vector.

Then, the decoder is trained with teacher forcing. Teacher

Forcing is mostly used to train language models, and

sequence to sequence task is a kind of language model.

Teacher Forcing is a kind of hint in training recurrent neural

networks that use the model output from a previous time

step as an input to the next time step. For example:

Input sentence for the encoder is a French sentence - nom

est

The actual target sentence in English - name is

In decoding, at first-time step, the token is given as input to

GRU along with the context vector. or mark the beginning of

decoding, and it will generate first output word in English

looking at context vector. Then, GRU will generate

Now, in the second-time be given as input along with the

previous time step hidden step. This will give an output as

This generation will continue as long as the token is

encountered.

At training time, we know the output sequence for the input

sequence, so we provide words of actual output for teacher

forcing. At test time, we don’t know the output sequence for

the input sequence, so the output token generated at time

step t is given as input to t+1 step, as shown in the

following diagram:

Figure 4.13: Encoder-Decoder architecture during

evaluation/testing.

Implementing Sequence Encoder/Decoder

The data for this recipe is a set of many thousands of

French to English translation pairs and can be downloaded

from This dataset is already present in the data directory of

Ch4 as To avoid distraction, I will only be converting the

essential components in the recipe, and the rest of the code

with all required functions to fully execute it can be found at

Encoder

As discussed, the encoder has the following components.

Embedding converts our words into dense vectors, and GRU

takes these embeddings and gives out hidden and output

vectors at each time-step. This hidden and output tensor is

returned for any given time step:

class EncoderRNN(nn.Module):

def __init__(self, input_size, hidden_size, n_layers=1):

super(EncoderRNN, self).__init__()

self.n_layers = n_layers

self.hidden_size = hidden_size

embed size = hidden size for simplicity

self.embedding = nn.Embedding(input_size, hidden_size)

self.gru = nn.GRU(hidden_size, hidden_size)

def forward(self, input, hidden):

input = input.unsqueeze(1)

embedded = self.embedding(input) # batch, hidden

output = embedded.permute(1, 0, 2)

output, hidden = self.gru(output, hidden)

return output, hidden

Decoder

The decoder has a structure similar to that of an encoder. It

has an embedding layer that converts the input to dense

vectors, which are then passed to the GRU layer. The first-

time step of the decoder receives a context vector as the

hidden state vector. A linear transformation is applied that

converts the output from GRU. This linear transformation

converts the GRU output into sizes equal to the output/target

language vocabulary size. A soft-max is applied to this layer,

and the values are converted to probabilities. The highest

probability for any word indicates that a particular word is

being generated as the output by the decoder:

class DecoderRNN(nn.Module):

def __init__(self, hidden_size, output_size, n_layers=1):

super(DecoderRNN, self).__init__()

self.n_layers = n_layers

self.hidden_size = hidden_size

#Embeding size = hidden size for simplicity

self.embedding = nn.Embedding(output_size, hidden_size)

self.gru = nn.GRU(hidden_size, hidden_size)

self.out = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax()

def forward(self, input, hidden):

output = self.embedding(input) # batch, 1, hidden

output = output.permute(1, 0, 2) # 1, batch, hidden

output = F.relu(output)

output, hidden = self.gru(output, hidden)

output = self.softmax(self.out(output[0]))

return output, hidden

Actual Training

Training includes joining all the bits and pieces we developed

earlier, starting with making an object for the encoder and

decoder, as follows:

encoder = EncoderRNN(input_size, hidden_size)

decoder = DecoderRNN(hidden_size, output_size, n_layers=2)

Training has the following components involved sequentially:

Collect all trainable components for encoder and decoder and

provide all these components to the optimizer.

Define the loss function.

Use our data loader to get source and target sentences.

Initialize encoder hidden state.

Run through all the tokens in the source sentence and

generate the final encoder hidden state.

Pass the final encoder hidden state to the decoder along with

the start of sequence token as input.

Run the decoder and allowing it to generate a token using

teacher forcing.

When the token is encountered, stop break the decoding

loop.

Calculate loss by comparing the generated output to the

actual output.

Back-propagate the loss and change the weights.

Optionally track loss to visualize whether the network is

converging.

Repeat steps 3 to 10 till all the sentence pairs are processed

in each epoch.

Run this training for n epochs and evaluate.

The following diagram shows that the training loss decreases

as training progresses:

Figure 4.14: Decrease in error noted when a network is trained

for the language translation task.

Evaluation

The evaluation module follows the same flow as training; it

takes the pre-trained encoder and decoder and generates

translated text. The main thing here is that teacher forcing

with the token generated in the previous time step is given

to the next time step. The decoder generates a word at each

time step, and the same word is fed as input to the next

time step. At test time, we don’t know the output sequence

for the input sequence, so the output token generated at time

step t is given as input to the t+1 step. The following output

is generated at the end of evaluation attempt:

attempt: attempt:

attempt: attempt: attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt: attempt: attempt:

attempt: attempt: attempt: attempt:

Table 4.2

Try to improve this translation by making a few of the

following variations:

With TorchText, use the function to provide the translation

dataset. Use this dataset in the previously built model to see

whether the model still works and produces a good

translation.

Extending one more step in the above pipeline, use pre-

trained GloVe or any other embedding to check whether the

result improves.

Refer to the following links for more details:

For details regarding unsqueeze, squeeze, logsoftmax,

permute, topk: https://PyTorch.Org/docs/stable/tensors.html

Professor A new algorithm for training recurrent networks:

https://arxiv.Org/abs/1610.09038

A learning algorithm for continually running fully recurrent

neural networks: http://citeseerx.Ist.Psu.Edu/viewdoc/download?

Doi=10.1.1.52.9724&rep=rep1&type=pdf

Understanding Batching with Seq2Seq

In the previous recipe, we built a basic model for language

translation. One thing to observe is that we have been using

CPU for translation in the previous recipe. In the previous

recipe, we only took one sentence at a time and translated it.

What if we can take many sentences at a time for training?

We can decrease the training time. GPU is a powerful device

with thousands of computing cores. If we use GPU by

translating one sentence at a time, we waste a lot of

computing resources by not using them fully. In this recipe,

the main task to learn is how to use batches of the source

and target sentence for the translation, instead of a single

sentence. Another thing to learn is how to use GPU to make

our training process faster.

Let’s say we want to build a When given a sentence with 26

words, it will convert it to a 52-word sentence. In earlier

examples, we used batch size = 1, so only one example was

processed at a time. It was easy to implement but not

efficient, so we must convert it to process n sentences

together to increase efficiency. This way, we will use roughly n

processors parallelly and process roughly n times faster as

well.

Figure 4.15: An illustration of how batching works with sequence

to sequence - an encoder phase.

The image illustrates an example where (1) shows that 64

sentences with a fixed length of 26 words are processed in a

single batch. In five example sentences are shown, such as

My name is I’m Deep Learning I love I love TF is Aww. Each

sentence is transposed to process them in a batch, and each

sentence is padded with PAD token to make the length equal

to 26, as shown in At each iteration, 64 elements are taken

row-wise, and 28-dimensional embedding is calculated for

each word, as shown in Then, 64 such elements are

processed with LSTM/GRU, as shown in LSTM/GRU results in

encoder output and encoder hidden state, which will be used

in t (5). Next time, at t + 1 iteration, 64 elements each from

one sentence are taken and processed in a similar way. This

iteration will be repeated 26 times, and encoder hidden of t

= 26 is passed to the decoder to use it as decoder hidden

or context vector:

Figure 4.16: An illustration of how batching works with the

sequence to sequence - decoder phase.

Decoder Phase

Decoding phase is shown in the second figure in the getting

ready section of the book:

Sentences of double length, that is, 52 (26*2) are shown with

batch size 64. To make sentences equal, padding (PAD token)

is used.

Each time step slice of shape 64 is taken, and 28-

dimensional embedding is generated for each word.

Such a slice with embedding of shape [64, 1, 28] is

processed with GRU/LSTM.

GRU/LSTM gives two things as output: decoder output, and

decoder is hidden.

Decoder outputs are stacked and will be the final output after

all time steps = are processed.

At each time step, the decoder’s hidden state of the previous

time step is used.

While training the decoding phase, the context vector is

received as the final encoder hidden state. The decoding

process is started with the token for all the sentences of the

batch being passed to the embedding layer. Embedding for all

tokens is generated, and these embeddings are passed to

GRU along with the decoder’s hidden state. In the first

decoder, the time step, the decode hidden state is the final

encoder hidden state, also known as context vector. GRU

generates a decoder hidden state and an output. This decoder

output is then stacked to the final output array as per the

time step. If at time all tokens were passed to the decoder,

the output at should have the first word for all 64 target

sentences. This way, entire sentences are generated in the

batch of 64. In each iteration, the decoder hidden state

generated at is used, and entire sentences are generated

similarly. Batching can only be done with fixed sizes of

sentences. To make all sentences of the same size, padding

is done. The end of the sequence is marked by .

Encoder and Decoder with Batching

Let’s start with encoder; our encoder uses GRU as RNN

units. Encoder unit takes two inputs: input and hidden. Input

shape will be a tensor of size [Batch_size, where [64, 26]. For

each batch, 64 elements are taken row-wise, and 28-

dimensional embedding is calculated. The hidden state shape

will be of size [unidirectional, Batch_size, where [1, 64, 28].

Here, we are using trainable PyTorch embeddings. Embed

layer will convert each word into a fixed-size vector, so the

embed layer will [Batch_size, input_size]_ to [Batch_size,

input_size, Embed_size] for each batch. So, the input [64, 1]

is given at each time step, and it will be converted to [64, 1,

28]. This says for 64 sentences, one word is taken, and 28

dimensions represent each word:

class EncoderRNN(nn.Module):

def __init__(self, input_size, hidden_size, n_layers=1):

super(EncoderRNN, self).__init__()

self.n_layers = n_layers

self.hidden_size = hidden_size

self.embedding = nn.Embedding(input_size, embed_size)

self.gru = nn.GRU(embed_size, hidden_size)

def forward(self, input, batch_size, hidden):

embedded = self.embedding(input).unsqueeze(1) #Input = 64 -

--> #Output [64,1]

embedded = embedded.view(1, batch_size, embed_size) #Input

= [64, 1] --- > #Output = [1, 64, 28]

output = embedded

output, hidden = self.gru(output, hidden)

return output, hidden #Output 1, 64, 28 #encoder Hidden =

1, 64, 28

ENCODER = EncoderRNN(input_size,hidden_size)

Decoder

The decoder unit takes two inputs: input and hidden. Input

shape will be a tensor of size [Batch_size, where [64, 52].

Hidden state shape will be of size [unidirectional, Batch_size,

where [1, 64, 28]. The last hidden state of encoder will be the

first hidden state of the decoder. Here, we are using trainable

PyTorch embeddings. The embed layer will convert each word

into a fixed-size vector, so it will produce [Batch_size,

input_size] to [Batch_size, input_size, Embed_size] for each

batch. So, [64, 1] will be converted to [64, 1, 28] (Each batch

has 64 sentences, and each word is represented by 28

dimensions). You must decode element by element for the

mini-batches. The initial decoder state [batch_size,

hidden_layer_dimension] is also fine. You just need to

unsqueeze it at dimension 0 to make it [1, batch_size, Note

that you do not need to loop over each example in the

batch; instead, you can execute the whole batch at a time,

but you must loop over all 52 batches of the input of dim

[64, 52].

One thing to note in the following code block is that I am

applying dropout after the embedding layer. Dropout is the

most-used regularization techniques in deep learning

architectures. It is applied after embeddings to regularize

them. Another thing to note is that dropout is only applied

during training, so I am using the following snippet:

if training == True:

embedded = self.drop(embedded)

class DecoderRNN(nn.Module):

def __init__(self, hidden_size, output_size, n_layers=1):

super(DecoderRNN, self).__init__()

self.n_layers = n_layers

self.hidden_size = hidden_size

self.embedding = nn.Embedding(output_size, embed_size)

self.gru = nn.GRU(embed_size, hidden_size)

self.out = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax(dim=1)

self.drop = nn.Dropout(0.2)

def forward(self, input, batch_size, hidden,training=True):

embedded = self.embedding(input) #Input = 64 ---> #Output

[64,1]

if training == True:

embedded = self.drop(embedded)

embedded = embedded.unsqueeze(1).view(-1,

batch_size,embed_size) # Input = 64, 1, 128 --- > #Output =

52, 64, 128

output = embedded

output = F.relu(output)

output, hidden = self.gru(output, hidden)

output = self.softmax(self.out(output[0]))

return output, hidden #Output 26, 64, 128 #encoder Hidden

= 1, 64, 128

running decoder

DECODER = DecoderRNN(hidden_size,output_size)

The Loss Function for Sequence to Sequence

The loss function for the sequence to sequence architecture is

a but different than regular loss calculations. In a batch, all

sequences are not of the same length, so we must not

calculate the loss for padding (OR PAD) tokens added to

input batches. To avoid this, a masked loss is calculated. In

addition to PAD, sometimes End of is added. Normal NLL

loss is calculated, and loss corresponding to PAD is changed

to zero by masking. The resultant loss will be equivalent to

the average loss derived by dividing the total loss by total

non-PAD tokens:

class customLoss(nn.Module):

def __init__(self,tag_pad_token = 1):

super(customLoss, self).__init__()

self.tag_pad_token = tag_pad_token

def forward(self,logits, target):

target_flat = target.view(-1)

mask = target_flat>self.tag_pad_token

loss = nn.NLLLoss(reduce=False)(logits,target)

loss = loss*mask.float()

result = loss.sum()/len(target)

return result

You can practice with the Jupyter notebook given at You can

try to understand different shapes by running the example

codes attached to the encoder and decoder. Change various

shapes according to your understanding, and try to see

whether the network still runs and gives the desired shape.

A bag of useful tricks for practical neural machine translation

- embedding layer initialization and large batch size can be

found at http://www.aclweb.org/anthology/W17-5708

Translating in Batches with Seq2Seq

In this recipe, we will implement the sequence to sequence

network, but we will use batching this time. Batching

efficiently utilizes the power of parallel hardware like GPU. In

the previous tutorial, I illustrated how batching works with

sequence to sequence. In this tutorial, we will use the same

encoder and decoder but with some modification in the data

pipeline, to achieve our goal. This tutorial will also

demonstrate the effect of batch size on learning. For our

case, you will see that batch size 32 is computationally 10X

more efficient than batch size 2.

Not to reinvent the wheel, I am using pre-processing the

code used in the official tutorial of the PyTorch. This code

was written to process one sample at a time; in the present

recipe, we will be batch processing sentences. This requires

very little changes in the code to accommodate padding for

source and target sentences. By applying to the pad, the

source batch and target batch will be made of equal size.

The max sentence size of source and target is taken as

reference, and all other sentences are padded to be made

equal to that sentence. If you have a closely observed

random_batch function in the topics discussed earlier, you will

find some addition in the following modified random_batch

function for batch processing. In the following script, the

highlighted part is changed to find the max length:

def pad_seq(seq, max_length):

seq += [0 for i in range(max_length - len(seq))]

return seq

def random_batch(batch_size=3):

input_list = []

target_list = []

Choose random pairs

for _ in range(batch_size):

pair = random.choice(pairs)

input_list.append(input_lang.indexes_from_sentence(pair[0]))

target_list.append(output_lang.indexes_from_sentence(pair[1]))

Sort by length

tmp_pairs = sorted(zip(input_list, target_list), key=lambda p:

len(p[0]), reverse=True)

input_seqs, target_seqs = zip(*tmp_pairs)

For input and target sequences, get array of lengths and

pad with 0s to max length

input_lengths = [len(s) for s in input_seqs]

target_lengths = [len(s) for s in target_seqs]

max_input_target = max(input_lengths+target_lengths)

input_padded = [pad_seq(s, max_input_target) for s in

input_seqs]

target_padded = [pad_seq(s, max_input_target) for s in

target_seqs]

Create tensor using padded arrays into (batch x seq)

tensors

input_var = torch.LongTensor(input_padded,device = device)

target_var = torch.LongTensor(target_padded, device = device)

return input_var, target_var

Implementing Encoder/Decoder Capable of Batch Processing

Let’s proceed with the same format as earlier.

Encoder

In encoder and decoder, I have used dropout as an additional

operation to add regularize learning. Additionally, one more

modification has been made to (device) function. As

discussed in the second chapter, to an object helps transfer

that object/ data to GPU, and further computation takes place

in a defined device. If GPU were not available, computation

would take place in CPU without any error. Note that the

hidden state weight initialization is done with

nn.init.xavier_normal_ here. Xavier / Glorot is the type of

weight initialization technique that works well with deep

learning. You can learn more about this initialization in the

research paper “Understanding the difficulty of training deep

feedforward neural networks”:

class EncoderRNN(nn.Module):

def __init__(self, input_size, hidden_size, n_layers=1):

super(EncoderRNN, self).__init__()

self.n_layers = n_layers

self.hidden_size = hidden_size

self.embedding = nn.Embedding(input_size, hidden_size)

self.gru = nn.GRU(hidden_size,

hidden_size,num_layers=n_layers)

self.drop = nn.Dropout(0.2)

def forward(self, input, batch_size, hidden, training=True):

embedded = self.embedding(input).unsqueeze(1) #Input = 64,

26 ---> #Output 64, 26, 128

if training == True:

embedded = self.drop(embedded)

embedded = embedded.view(-1, batch_size,

self.hidden_size)#Input = 64, 26, 128 --- > #Output = 26, 64,

128

output = embedded

output, hidden = self.gru(output, hidden)

return output, hidden #Output 26, 64, 128 #encoder Hidden

= 1, 64, 128

encoder = EncoderRNN(input_size, hidden_size, n_layers=1)

encoder = encoder.to(device)

Decoder

This is the usual decoder using GRU as the recurrent units:

class DecoderRNN(nn.Module):

def __init__(self, hidden_size, output_size, n_layers=1):

super(DecoderRNN, self).__init__()

self.n_layers = n_layers

self.hidden_size = hidden_size

self.embedding = nn.Embedding(output_size, hidden_size)

self.gru = nn.GRU(hidden_size, hidden_size,num_layers =

n_layers)

self.out = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax(dim=1)

self.drop = nn.Dropout(0.2)

def forward(self, input, batch_size, hidden,training=True):

embedded = self.embedding(input) # Input = 1,64, 52 --->

#Output 64, 128

if training == True:

embedded = self.drop(embedded)

embedded = embedded.unsqueeze(1).view(-1,

batch_size,self.hidden_size) # Input = 64, 1, 128 --- >

#Output = 52, 64, 128

output = embedded

output = F.relu(output)

output, hidden = self.gru(output, hidden)

output = self.softmax(self.out(output[0]))

return output, hidden #Output 26, 64, 128 #encoder Hidden

= 1, 64, 128

decoder = DecoderRNN(hidden_size, output_size, n_layers=1)

decoder = decoder.to(device)

The Loss Function for Sequence to Sequence

As discussed in the previous recipe, all sequences in a batch

are not of the same length. So, we must not calculate the

loss for padding (OR PAD) tokens added to the input

batches. To avoid this, a masked loss is calculated. In

addition to PAD, End of Sequence is added sometimes. NLL

loss is calculated, and loss corresponding to PAD is changed

to zero by masking. The resultant loss will be equivalent to

the average loss derived by dividing total loss by the total

non-PAD tokens. Now, I will combine all parts of the

implementations into one function, and this train_it function

takes six inputs:

Encoder object

Decoder object

Batch To help us look at the effect of Batch size on training

The number of random batches used to train the model

To evaluate using random samples while training

To plot the progress

In the Current implementation, I will use a learning rate of

0.001 and an RMSprop optimizer. RMSprop is a kind of

optimizer that adapts the learning rate by dividing by the root

of the squared gradient. To understand RMSprop in detail,

you can check the references implemnttion.

As a rule of thumb, one should use a batch size between 4

and 64. Next, we will use batch size 2. It is clear from the

plot of loss vs. iteration that loss is not decreasing, so no

learning is taking place. With a smaller batch size, optimum

one, it will take more time to get trained. It took total wall

time of 1 min 34s.

Added %%time as the magic like at the beginning of the

Jupyter notebook cell provides the execution time of the block

when the function finishes execution.

%%time

encoder = EncoderRNN(input_size, hidden_size, n_layers=1)

decoder = DecoderRNN(hidden_size, output_size, n_layers=1)

encoder = encoder.to(device)

decoder = decoder.to(device)

batch_size = 2

train_it(encoder,decoder,batch_size, 1000, test = False, plot =

True)

Figure 4.17: Showing no significant decrease in the loss when

training is done keeping the batch size equal to 2.

Running the same training process with 32 batch size took a

total wall time of 2min 21s:

%%time

encoder = EncoderRNN(input_size, hidden_size, n_layers=1)

decoder = DecoderRNN(hidden_size, output_size, n_layers=1)

encoder = encoder.to(device)

decoder = decoder.to(device)

batch_size = 32

train_it(encoder,decoder,32, 1000, test = False, plot = True)

Figure 4.18: Showing a significant decrease in loss when training

is done keeping batch size equal to 32.

When we run with batch size 2 for 1000 iteration, it

processes 2000 samples and takes 1min 34 sec or 94

seconds or 2000/94 = 21.27 samples/sec. When we run with

batch size 32 for 1000 iteration, it processes 32000 samples

and takes 2 min 21 sec or 94 seconds or 32000/94 = 226.95

samples/sec.** That is a 10X** improvement. The reported

loss in the second case is also lower than in the first case.

The second case processes more samples, so its loss will be

much lower than the first one. Note that the tie reported

here is highly dependent on the kind of GPU and CPU you

use.

Slowly, you will see that the translation is improving after

every 1000 iterations. The entire implementation with

supporting functions is given at

There’s more to discuss:

I used GRU in the preceding illustrations, and used LSTMs to

see if it makes a significant difference in the quality. Note

that LSTM requires two states—a cell state and a hidden

state—so change the state initialization and input of the

LSTM accordingly.

Try to see the effect of batch size on the translation quality.

Take a look at the following references:

How to choose optimum batch size:

https://stats.stackexchange.com/questions/164876/tradeoff-batch-size-

vs-number-of-iterations-to-train-a-neural-network

Understanding RMSprop — faster neural network learning:

https://towardsdatascience.com/understanding-rmsprop-faster-neural-

network-learning-62e116fcf29a

Implementing Attention for Language Translation

Understanding the attention mechanism is very important, as

it leads to powerful language blocks like The recently-released

model by Google research, which claims to beat all previous

state-of-the-art language models by a considerable margin,

also includes attention variants.

Figure 4.19: Attention mechanism as depicted in Attention Is All

You Need

This is the famous diagram as depicted in paper, but it does

not provide the details required to implement the mechanism.

This recipe will help you understand the entire flow and every

operation involved in the attention mechanism. In this

implementation, we will use sequence-to-sequence models. We

will implement the attention mechanism described in the

Neural Machine Translation paper by jointly learning to Align

and This model is different from the previous

implementations in the following aspects:

We will use the Multi30k dataset, which is considered as a

standard dataset when it comes to comparing the

performance of different machine translation models.

We will use bi-direction RNN; this is little add-on to the

previous RNN layers.

We will use an attention mechanism to translate better.

As we saw in the previous topics, we are only providing the

last decoder hidden state (context vector) to the decoder, and

the decoder produces a target sentence using this

information. The output of the encoder time steps are not

used at all. The previous approaches may suffer from the

following problem:

The context vector might be unable to remember the entire

sequence correctly or may forget information related to the

early time steps.

The output vector at each time step with vital information

about each time step is not being used at all.

Encoder

Before going ahead, we will understand the bidirectional RNN

layers. Up to the previous implementation, we used only RNN

(or Unidirectional RNN), which means it runs in a single

direction. In this implementation, I am using bidirectional

RNN. This means each layer has two RNNs: one running in

the forward direction of the sequence, and another running in

the backward direction. Bidirectional RNN does not require

any extra line of code; it just requires the bidirection=True

parameter. After this, we can pass the embedded sentence as

we used did in the previous implementations. Here’s an

example:

example:

example: example: example: example: example: example:

example: example: example: example: example:

Table 4.3

Where,

Start of sequence indicator

End of sequence indicator

Mathematically, bidirectional RNN can be represented as

follows:

Where is input at the current time step, and is the hidden

state from the previous time step. For an example of German

to English, the first and second input token for forward and

backward RNN is given as follows:

Forward

Backward

As shown below, it has forward and backward units. Each

unit takes one input and generates output O and updated

hidden state :

Figure 4.20: Showing bidirectional RNN: one unit with forward

and backward RNN units.

For understanding, I have shown an RNN layer with

bidirectional units in the unrolled state.

Each word of the input in the embedded form is taken in the

forward and the backward direction. At each input at time-

step, a forward output and a backward output are generated.

At the end, the hidden forward state and backward hidden

are generated. Hidden state in the forward and backward

state is also represented in the form and , respectively.

To keep things simple, we only pass the embedded input to

the GRU and leave initialization of the forward state and

backward state to the GRU this time. Finally, both the hidden

state from forward and backward run are concatenated to get

the context vector Z for layer, represented by .

The decoder is not bidirectional, and the author only uses the

only one hidden state in the original paper. Instead, here I

have concatenated both the forward and the backward hidden

state and applied activation: , where C stands for the final

context vector.

Attention Mechanism

The attention layer takes the encoder hidden and encoder

output as the output. The attention mechanism has many

operations attached, but the main idea is to combine encode

outputs and the content vector (final encoder hidden state) to

produce the attention weight. This attention weight has

information about the weight required for each token in the

source language. This attention state represents which source

word should be given more weight to generate the next target

word. This attention vector after Batch-wise Matrix

Multiplication added to the previously generated decoder token

and generate the next token at time

Figure 4.21: A simplified summary of the attention mechanism. It

has three components: encoder, decoder, and attention

mechanism.

Decoder

The decoder contains the attention layer, and the decoder

function takes the input, encoder hidden/ context vector and

encoder outputs. Suppose we have a batch size of 4. For the

first time steps, the indices corresponding to the token are

given as This is equivalent to the shape [1, 4]. Let’s say we

have embedding dimension10, so each index will be

represented by a 10-dimensional dense vector, and the

resultant shape will be [1, 4, 10] after applying the

embedding. This serves as the input to the decoder RNN

after addition to attention weight.

The implementation aspect of the following parts of the

sequence to the sequence model will be discussed, including:

Dataset

Encoder

Attention mechanism

Decoder

Dataset: Up to the previous iteration, we were using the

French to English translation pairs with a few thousand

training samples. In this implementation, to keep the

preprocessing part simple, I will use a multi30k dataset.

Multi30k is a slightly larger dataset from WMT 2016

multimodal task, also known as In multi30k 29, 000 training,

and 1, 014 test samples are provided. The current task is

related to the German to English translation. The attention

model has many parameters attached, and it is really difficult

to train such a model with such a small dataset. Due to this

treason, I am using a slightly larger dataset. After this

implementation, you will see that the attention model can

generate a really meaningful translation.

Encoder: The encoder is similar to our previous

implementations and gives two outputs:

Outputs for each time-step will be of shape [src sent len,

batch size, hid dim * num directions]

Concatenated hidden states of shape [n layers * num

directions, batch size, hid dim]

In the code, [-2,:, :] gives the top layer forward RNN hidden

state after the final time-step (i.e., after it has seen the last

word in the sentence), and [-1,:, :] gives the top layer

backward RNN hidden state after the final time-step (i.e.,

after it has seen the first word in the sentence).

Attention mechanism: The overall procedure, as shown in the

figure can be summarized as follows:

Take encoder outputs and encoder hidden.

Repeat encoder hidden to source the sequence length times.

Concatenate both the output after proper permutation.

Apply additional operations like permute and carry out Batch-

wise Matrix Multiplication with the learnable vector.

After these operations, the generated weight is called

Attention weight.

Attention weight undergoes BMM with encoder.

Output: These attention weights are then given to the

decoder.

class Attention(nn. Module):

def init(self, enc_hid_dim, dec_hid_dim):

super().init()

self.enc_hid_dim = enc_hid_dim

self.dec_hid_dim = dec_hid_dim

self.attn = nn.Linear((enc_hid_dim * 2) + dec_hid_dim,

dec_hid_dim)

self.v = nn.Parameter(torch.rand(dec_hid_dim))

def forward(self, hidden, encoder_outputs):

batch_size = encoder_outputs.shape[1]

src_len = encoder_outputs.shape[0]

hidden = hidden.unsqueeze(1).repeat(1, src_len, 1)

encoder_outputs = encoder_outputs.permute(1, 0, 2)

energy = torch.relu(self.attn(torch.cat((hidden, encoder_outputs),

dim = 2)))

energy = energy.permute(0, 2, 1)

v = self.v.repeat(batch_size,1).unsqueeze(1)

attention = torch.bmm(v, energy).squeeze(1)

return F.softmax(attention, dim=1)

Decoder: The decoder has the following steps to perform:

The attention weight vector is added to the embeddings of

the previously generated token in the decoder. If the first

token needs to be generated, all embeddings of a token are

provided as input. The decoder will output the next token.

As per the teacher forcing training scheme, the generated

token is given as input to the next time-step.

The following are a few generated and original sentences:

sentences:

sentences: sentences: sentences: sentences: sentences:

sentences: sentences: sentences: sentences: sentences:

sentences:

sentences: sentences: sentences: sentences: sentences:

sentences: sentences: sentences:

sentences: sentences: sentences: sentences: sentences:

sentences: sentences: sentences: sentences: sentences:

sentences: sentences:

Table 4.4

When attention mechanisms are applied to the translation

task with a strong theoretical background, the quality

increases. Yet, the translation quality is up to the mark, and a

better network like the transformer is used to get an even

better translation. You can find the well commented

implementation at

In the preceding example, we tried to train the embedding

from scratch, accommodate Glove or FastText embeddings, and

see if it can improve the results. The language translation

result is generally judged based on the Bilingual Evaluation

Understudy Score score. BLEU is a metric for evaluating the

generated and the reference sentence, and BLEU score can be

easily calculated using the sci-kit library, as follows:

from nltk.translate.bleu_score import sentence_bleu

reference = [[‘this’, ‘is’, ‘a’, ‘Monkey’], [‘this’, ‘is’ ‘Monkey’]]

candidate = [‘this’, ‘is’, ‘a’, ‘key’]

score = sentence_bleu(reference, candidate)

print(score)

This score is the standard metric used to measure the quality

of the translation; the higher it is, the more human-like the

generated translation is.

You can refer to the following links:

Neural machine translation by jointly learning to align and

translate: https://arxiv.Org/abs/1409.0473

Effective approaches to attention-based neural machine

translation: https://arxiv.Org/pdf/1508.04025.pdf

Conclusion

In this chapter, we had our very first experience with models

like Vanilla Recurrent Neural Networks, Gated Recurrent Unit,

and Long Short-Term Memory. These models are collectively

referred to as recurrent networks. We implemented all the

forms of RNN using Pytorch, and this chapter also provided

the very first practical experience of building embedding, data

loader, and text processing before we built the actual model.

We also learned how to implement the simple sequence to

sequence model by combining two bigger models: encoder

and decoder. Then, we gradually built this model so that it

processes in batches, and we applied attention logic to it.

The attention mechanism is used in all new networks like

transformers. We developed our first application using the

attention mechanism—a machine translation application.

Although the machine translation model is a basic one, it

provides a strong hands-on experience on how sequence to

sequence model works and helps uplift your implementation

skills to the next level.

The next chapter will take you through how to apply CNN in

NLP tasks.

CHAPTER 5

Applying CNN in NLP Tasks

Convolution networks are traditionally used for image

processing, but it has recently been found that using them

for text processing could help us achieve higher accuracy in

many tasks. Nowadays, CNN is used in text classification,

language translation, question answering, and embeddings

generation. State-of-the-art embeddings generation techniques

have inbuilt CNN components. In this chapter, we will

understand how to use CNN components with PyTorch and

look at the application of text and character-based features

with a convolution neural network. Later, we will see how to

go beyond 30 layers and utilize such a network for text

classification. At last, this chapter covers a few methods to

train deeper networks with more than ten layers stacked on

one another. This recipe will cover the peculiar tricks used in

ResNet, Highway networks, and DenseNet to reach deeper.

Structure

In this chapter, we will cover the following recipes:

Understanding CNN

Using word level CNN

Using character level CNN

Training deeper networks

Objective

Understanding convolution operations, understanding the effect

of the filter size, and stride width on end prediction

Implementing CNN and testing its ability to generalize on

unknown examples

Understanding and applying an advanced function like batch

normalization

Understanding word convolution, character convolution, and

grouped convolution and reason behind the high efficiency of

such networks

This chapter focuses mainly on applying convolutional

networks to text.

Pre-requisites

The code for this chapter can be found in the Ch5 folder at

GitHub repository This chapter requires the following packages

to execute code:

Pandas

Matplotlib

Torch

Numpy

Scikit learn

Numpy

Nltk

Spacy

TensorboardX

Tensorflow

You can install these requirements by installing all the

packages listed in requirements.txt simply by issuing pip

install -r This chapter uses Ipython Notebook/Jupyter

Notebook for easy execution and for connecting thoughts with

implementation.

Understanding CNN

Convolutional Neural Networks are popularly known as CNN.

Convolve is the mathematical operation, and the concept of

convolution operation is not new. The way convolution

operations were applied to the images by Yann LeCun was a

novel approach, and Yann LeCun applied CNN to the MNIST

dataset using the LeNet5 architecture. Having achieved

success in classifying handwritten numbers, Yann LeCun

actively pushed this architecture into the research community.

Convolution is a mathematical function where shape A and

shape B interact to form a shape which is a modification of

Convolution neural network is very similar to the feed-forward

network, as they are both made up of neurons having

learnable weight and bias. CNN can be trained using

optimizer and loss function as used for RNN and FFN. In

Feed-forward the 1-dimensional vector is passed through a

series of the layer, each having several perceptions. The

perceptrons in the same layer do not interact with each other

and work independently with the surrounding layers. Each of

these perceptrons is fully connected with the perceptions of

the previous and next layer.

Convolution neural networks take 3D inputs like images, which

have height, width, and several channels (RGB). A CNN

operates by sharing weights in the same layer, so it can

better deal with images. We will see how CNN shares weights

in detail. In CIFAR-10, images are only of size 32x32x3, and if

we process it by the fully connected network, the input size

will be 3072. While this is manageable, image size of 200 x

200 x 3 will mean there are 120,000 features. Handling the

weight of size [120, 000, m] is not an easy task, where m is

the size of the first hidden layer attached to the input. The

following is an illustration of the regular neural network and

CNN:

Figure 5.1: The similarity between the FFN and the CNN

Both have similar nature; FFN takes 1D input, whereas CNN

takes 3D input.

Understanding Convolution Operations

The term convolution is derived from the word convolve,

which is a mathematical operation. A CNN consists of many

types of layers, including convolution, pooling layer, fully

connected layers, and activation layers like Relu.

Convolution Layers

Convolution layers have learnable parameters caller filters. A

filter has smaller receptive fields but extends through the

entire depth of the input volume. During the forward pass,

the filter moves over the width, and the height of the input

volume and dot product is calculated between elements of

the input shape and the elements of the filter. These filters

are learnable, so the network learns to detect essential

features. Such filters are activated when a particular pattern is

detected. The following diagram contains an input shape and

a filter and a resultant product:

Figure 5.2: The convolution operation is explained by taking an

example of shape and filter.

The 2D input is of size 66. The 2D filter of size 3 x 3 is

convolved over the highlighted part of the 2d input. The

resultant value after convolution calculation is inserted into

the output shape, as shown. This filter convolves over the

entire input shape by jumping one cell at a time(stride).

We can use the following generalized equation to calculate

the output shape:

Here in the equation W = Input matrix size, F =filter size, P

= Padding, and S = Stride For above taken example the

parameters are W = 6, 3, P = 0, and S = 1, the resultant

shape turns out to be 4:

Let’s discuss some of the hyperparameters that can affect the

output of the convolution operation.

Padding

Padding is applied to a convolution neural network to control

the output shape. If padding equal to 1 is applied to the

preceding example, the input volume looks as follows:

The output shape will be 6 – 3 + 2*1/1 + 1 = 6. Hence, if

padding equal to 1 is applied to the input shape, the output

shape will be of the same size.

Stride

Stride controls how many pixels the filter jumps while sliding

on the input shape. If stride = 1, we move one pixel at a

time. Stride more than 3 is uncommon in the image-related

example. If a stride above 3 is chosen, the filter jumps 3-pixel

at a time, leading to a loss of information. The filter position

with the various values of stride is shown below. Earlier, we

saw that with the input shape of 6, filter size = 3, padding =

0 and stride = 1, the output shape was 4. Let’s see what

happens if we apply stride = 2:

The resultant shape will be of size 2.5, which is not possible,

so stride cannot be any value; it has to be applied after

making shape calculations.

Pooling layers

Pooling layers are an essential part of convolution neural

networks. Pooling layers perform downsampling operation on

the input shape. The pooling operations have two inputs:

kernel size and stride. Kernel decides the slice of shape

where pooling is applied, and stride determines how many

pixels a kernel will slide at a time. Generally, two types of

pooling operations are applied: max pool and average Max

pool is where the max element in the pooling filter is taken,

and average pooling is where the average of all elements in

the pooling filter is taken. Optionally, one can apply padding

to the input shape before applying pooling operation.

Figure 5.3: Showing of max and average pool.

Fully Connected Layers

The main aim of applying convolution and pooling operation

is to concentrate the information. After sufficient depth of the

convolution and polling is reached, the fully connected layer is

applied to classify an image into the desired class. VGG

network has all these layers. The Visual Geometry group

developed this network at Oxford University. A brief about this

theory is covered, and we will understand how to implement

convolutional layers using PyTorch as we move ahead.

Convolution layer: PyTorch has a separate convolution layer for

1D, 2D, and 3D inputs.

Convolution 1D

Here, torch.nn. Conv1d takes 16 channels and output 33

channels. The filter kernel size is 3, and the stride is 2. When

input shape in a batch of 20 with each having 16 channels

with 50-feature is given, the resulting shape will be [20, 33,

24]. The output shape is a little wrinkled than the input one:

m = torch.nn.Conv1d(in_channels=16, out_channels=33,

kernel_size=3, stride=2)

input = torch.randn(20, 16, 50)

output = m(input).shape

>>>torch.Size([20, 33, 24])

Conv 1D is often used in text processing. Here, the input can

be a sentence in the batch of 20, where each sentence has

max 16 words, and a 50-dimensional dense vector describes

each word. The resultant vector 16, can be given as input to

Convolution 2D

Convolution 2D is often used for images. Here, the Conv2d

function defines kernel_size=3 and The image like 3D shape is

given as input in batches of 20, with each image of size 50*

50 having 3 channels (RGB):

m = torch.nn.Conv2d(in_channels=3, out_channels=33,

kernel_size=3, stride=2)

input = torch.randn(20, 3, 50, 50)

output = m(input)

>>>torch.Size([20, 33, 24, 24])

Convolution 2D operation is used for text. Also, let’s say, for

a given problem, that each sentence can have max word

equal to 50, each word can be of max ten characters, and

each word can have 64 unique characters. The resultant

shape is 10, if such input is processed in a batch of 32, the

resultant shape 50, 10, can be given as input to

Pool Layers

Similar to the convolution layer, PyTorch has 1D, 2D, and 3D

pooling layers. PyTorch pool takes kernel size as the required

parameter and other operational parameters like stride and

padding:

m = torch.nn.MaxPool1d(3, stride=2)

input = torch.randn(20, 16, 50)

output = m(input)

torch.Size([20, 16, 24])

Similarly, 2D and 3D pools are applied. PyTorch has the and

AvgPool3d functions to support average pooling.

Rectifier Linear Unit (Relu)

ReLu is the newly invented activation function and produces a

state-of-the-art result with faster convergence. The Relu

function can be given as. It is very simple, it only allows

positive values. Gradient computation is simple, as there are

no exponent or division operations that must be

differentiated. The simple operation essentially speeds up

computation.

Go through the architecture of the Very deep convolutional

networks for large-scale image recognition and try to code it

using PyTorch. We have already seen where 1D and 2D CNN

are used, but what about 3D CNN? Try to find out use cases

where 3D CNN are used. To hone your CNN implementation

skills, we will take a few interesting applications of 2D and

1D CNN in the upcoming chapters.

You can check out the following references:

Gradient-based learning applied to document recognition:

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Deep learning using rectified linear units

https://arxiv.org/pdf/1803.08375.pdf

Using Word Level CNN

Traditionally, CNN is used for various vision-related

applications. In this recipe, we will see how CNN can be

applied to the text classification problem. We will use the

word level features and pre-trained embedding with CNN for

the text classification problem. We will also understand and

implement logic as published in Neural Networks for Sentence

by Jonas Gehring et.al., According to this paper, with pre-

trained embeddings, one can achieve excellent results by just

using a few layers of CNN. Let’s look at this paper in detail

and understand how to leverage CNN for text-related tasks.

Before moving to implementation, let’s understand the model.

The model is shown in the following figure:

Figure 5.4: The architecture of the model that takes word level

features and performs text classification.

The figure shows the architecture of the model that takes

word-level features and performs text classification. Let’s take

a sentence with n words, each word having k dimensional

vector; the resultant vector size is n * All sentences are

expected to be padded to have equal size. This input matrix

of size n * k is then convolved using different filter sizes. In

our implementation, we will use filter sizes = [2, 3, 4]. One

more thing to observe here is that the stride size is very

large. On regular CNN, we hardly go to a stride size of 4-5,

but a stride of 100 is used here. In this model, the stride

size will always be equal to the size of the embedding By

keeping the stride equal to the embeddings, the model learns

the feature for each word separately. Mathematically, a filter of

height H = {2,3,4} is selected with width/stride k equal to the

dimensions of the embedding vectors. This way, different

features are learned by choosing different words. Suppose the

input matrix X = n * If a convolution operation W is applied

with filter size the derived features can be given as:

= (W • + h + b)

Here, is the small portion of the input matrix for the

sentence over which the convolution operation was applied,

and b is the bias term. Such operation with different window

size/ kernel size is applied and features are collected. Then,

the max pool in 1-dimension is applied over the collected

features to identify striking features. After max pooling, all the

features are concatenated and the feed-forward layer is applied

on top of the previous layers.

CNN is not sequence-based, unlike RNN. In RNN, the

previous time step must be completed to compute the next

time step, so parallelization is limited. The main advantage of

this technique is that computation can be fully parallelized

and can better use GPU like devices.

Pre-processing

In this recipe, we will use IMDB, large movie review dataset.

It is a dataset for binary sentiment classification containing

25,000 highly polar movie reviews for training and testing.

Let’s use TorchText to pre-process our data. The pre-

processing involves:

Splitting the data into two parts: train, and test

Reading the data using TorchText and applying various pre-

processing operations like tokenization, padding, and

vocabulary generation

Defining data fields

Generating vocabulary

Making a train and test data iterator

defining data fields

REVIEW = data.Field(sequential=True, preprocessing =

pad_to_equal, use_vocab = True, lower=True,batch_first=True)

LABEL = data.Field(is_target=True,use_vocab = False,

sequential=False, preprocessing =to_categorical)

fields = {‘review’: (‘review’, REVIEW), ‘label’: (‘label’, LABEL)}

constructing tabular dataset

train_data, test_data = data.TabularDataset.splits(

path = ‘’,

train = ‘train.json’,

test = ‘test.json’,

format = ‘json’,

fields = fields)

constructing vocabulary

REVIEW.build_vocab(train_data, test_data)

LABEL.build_vocab(train_data, test_data)

making iterator

train_iter, test_iter = data.Iterator.splits(

(train_data, test_data), sort_key=lambda x: len(x.review),

batch_sizes=(16,len(test_data)), device=device,)

Embedding

For this experimentation, we will use the GloVe vector of

dimension 100 trained on the Wikipedia+Gigaword 5 (6B)

dataset. We will use chakin to download GloVe word vectors,

and map the vocabulary for our train and test split to the

GloVe vector using the following snippet. We will also use

this shortcut again in this chapter:

vec = vocab.Vectors(name = “glove.6B.100d.txt”,cache = “./”)

REVIEW.build_vocab(train_data, test_data, max_size=100000,

vectors=vec)

vocab vecotr mapping

review_vocab = review.vocab

This mapping is then passed to the embeddings layer of the

network by directly passing it as weights to the PyTorch

embedding layer. By setting autograd equal to false, we set

this layer as non-trainable:

self.embedding = nn.Embedding(embed_num, 100)

self.embedding.weight.data.copy_(review_vocab.vectors)

self.embedding.weight.requires_grad = False

Convolution Layers

Embeddings generated in the previous layer for each sentence

are passed to the following convolution layer. Generally, when

it comes to sentiment analysis, the entire review is passed to

the Conv2D with different filter sizes [2, 3, 4] and can be

represented as follows:

self.conv13 = nn.Conv2d(in_channels = 1, out_channels=8,

kernel_size= 100)

self.conv14 = nn.Conv2d(in_channels = 1, out_channels=8,

kernel_size= 100)

self.conv15 = nn.Conv2d(in_channels = 1, out_channels=8,

kernel_size= 100)

The output of the conv2D layer is passed to the maxpoll1D

layer, and all the resultant features are concatenated as

follows:

x1 = self.conv_and_pool(x,self.conv13)

x2 = self.conv_and_pool(x,self.conv14)

x3 = self.conv_and_pool(x,self.conv15)

x = torch.cat((x1, x2, x3), 1)

Finally, a fully connected layer, along with dropouts and ReLu,

is used to squeeze the features into two output equal to final

classes:

x = self.dropout(x) # (N, len(Ks)*Co)

logit = F.relu(self.fc1(x)) # (N, C)

logit = torch.softmax(logit, dim=1)

When I applied the preceding implementation to the IMDB

sentiment analysis dataset, it achieved over 95% accuracy on

train data and 75% accuracy on the test data. You can go

through the code and correlate it with the original research

paper. The loss and accuracy of progress throughout the

training are given as follows:

Figure 5.5: Training progress with iterations.

The entire code discussed earlier can be found in Ipython

notebook as

Ch5/using_word_level_cnn_for_text_classsification.ipynb.

The preceding research paper included the state-of-the-art

techniques that improve on 4 out of 7 tasks, including

sentiment analysis and question answering. For better

understanding, you can try with following variations in the

network:

Try by training embedding from scratch

With pre-trained embedding, try keeping the embedding

trainable (you can keep pre-trained embeddings trainable by

adding self.embedding.weight.requires_grad = True to the

implementation)

You can refer to the following links:

Natural language processing (almost) from scratch:

http://www.jmlr.org/papers/volume12/collobert11a/collobert11a.pdf

Large movie review dataset:

http://ai.stanford.edu/~amaas/data/sentiment/

Using Character Level CNN

Earlier, we explored how to use the word-based features for

the text classification. In this recipe, we will use character-

based features to classify the text. Character-based features

are very powerful and have many advantages over word-based

features. The paper we plan to implement in this recipe was

published as Character-level Convolutional Networks for Text

Classification by Xiang Zhang and coworkers.

This network is a deep convolutional network with six

convolution layers, followed by dense layers. Each convolution

layer is The following schematic diagram illustrates the model:

Figure 5.6: An illustration of the model.

Each convolution layer is followed by a ReLU convolution

layer, and max-pool operation is applied to concentrate

features. In short, each convolution block looks as follows:

conv1 = nn.Sequential(

nn.Conv1d(in_channels=self.config.vocab_size,

out_channels=self.config.num_channels, kernel_size=7),

nn.ReLU(),

nn.MaxPool1d(kernel_size=3)

)

To construct an individual block, we used the PyTorch

function, which helps keep the network tidy and easy to

understand. In the larger network, each network sub-block is

designed as and all these sub blocks are added to form the

entire network. is a container, and the module is executed in

the order they are stacked in the constructor. You can also

pass the ordered dictionary to the module. An example of

both approaches is given as follows:

Constructing Sequential block with Stacking

model = nn.Sequential(

nn.Conv2d(1,20,5),

nn.ReLU(),

nn.Conv2d(20,64,5),

nn.ReLU()

)

Constructing Sequential block with OrderedDict

model = nn.Sequential(OrderedDict([

(‘conv1’, nn.Conv2d(1,20,5)),

(‘relu1’, nn.ReLU()),

(‘conv2’, nn.Conv2d(20,64,5)),

(‘relu2’, nn.ReLU())

]))

The character representation for this module includes fixing

character vocabulary like an English text that can have the

following characters: abcdefghĳklmnopqrstuvwxyz0123456789, ;

All other characters are ignored. A maximum length of the

sentence or document is fixed. In the paper, the max

character length was fixed to be 1014. Considering the size of

our dataset, the max character length is fixed at 300 in our

case. The original model’s configuration for the convolution

layer with various kernel size is given as follows:

follows:

follows:

follows:

follows:

follows:

follows:

follows:

Table 5.1

On the other hand, in our case, the preceding configuration

is slightly changed to converge on the smaller dataset. The

configuration of our network as follows:

follows:

follows:

follows:

follows:

follows:

follows:

follows:

Table 5.2

Followed by convolutional blocks, the network has three dense

layers, each with Relu activations, and dropout is applied after

each dense layer. The model is trained with stochastic

gradient descent, and the learning rate will be half after every

three epochs.

Understanding Character Representation

To demonstrate character-based text classification, we will take

the AgNews dataset for the supervised learning task. AGNews

is a collection of more than 1 million news articles collected

from over 2000 news sources. Ag News corpus can be

downloaded from After downloading this corpus, one may

require to extract the data from an XML format. To avoid

these additional steps, check a cleaner version of the ag news

data set in the Ch5/data The dataset is divided into train and

test split, referred as Ch5/data/ag_news.test and

Ch5/data/ag_news Train are kept in ready to use format.

Character representation: The code snippet generates character

representation. It has two main functions. The first is which

houses the vocabulary set and defines various limits like the

length of data, unique labels, and unique character in the

text. The second function is getitem, which constructs the

character-based feature matrix:

class MyDataset(Dataset):

“””

preparing 2D character array from the text

“””

def __init__(self, data_path, config):

“””

Defining character set

“””

self.config = config

self.vocabulary =

list(“””abcdefghĳklmnopqrstuvwxyz0123456789,;.!?:’\”/\\|_@#$%

^&*~’+-=()[]{}”””)

self.identity_mat = np.identity(len(self.vocabulary))

data = get_pandas_df(data_path)

self.texts = list(data.text)

self.labels = list(data.label)

self.length = len(self.labels)

def __len__(self):

return self.length

def __getitem__(self, index):

raw_text = self.texts[index]

data = np.array([self.identity_mat[self.vocabulary.index(i)] for i in

list(raw_text) if i in self.vocabulary],

dtype=np.float32)

if len(data) >self.config.max_len:

data = data[:self.config.max_len]

elif 0

data = np.concatenate(

(data, np.zeros((self.config.max_len - len(data),

len(self.vocabulary)), dtype=np.float32)))

elif len(data) == 0:

data = np.zeros((self.config.max_len, len(self.vocabulary)),

dtype=np.float32)

label = self.labels[index]

return data, label

The character-based feature matrix with 64 unique characters

with sentence/document max length equals 300 is shown in

the following figure. The position in the matrix where a

particular character and its index in sentence/document is

marked as 1, else all indices are kept zero:

Figure 5.7: An illustration of how the character is given as

features. X is the position of character in the sentence, and y is

the location of the character as one hot encoding.

From the image, we have taken max length of the sentence

to be 300. Each character can be one of the 64 different

types of predefined characters. If the character is present at

the given index in the sentence, the position of the character

is marked as 1, and all the others remain at zero. In the

figure, the presence of the character in any particular location

is shown in Yellow (1).

Network Architecture

A discussed earlier, the network has 6 convolution layers, and

each layer is constructed using the module. The output frame

length after the last convolutional layer and before any of the

fully-connected layers) is. This number multiplied with the

frame size at layer 6 produces the input dimension that will

be compatible with the first fully-connected layer accepts.

Followed by the convolution layer, there are three fully

connected layers that are finally converged into several

classes:

class CharCNN(nn.Module):

def __init__(self, config):

super(CharCNN, self).__init__()

self.config = config

conv1 = nn.Sequential(

nn.Conv1d(in_channels=self.config.vocab_size,

out_channels=self.config.num_channels, kernel_size=7),

nn.ReLU(), nn.MaxPool1d(kernel_size=3))

**Such six convolution block conv1, conv2, conv3, conv4,

conv5, conv6**

conv_output_size = self.config.num_channels *

((self.config.max_len - 96) // 27)

linear1 = nn.Sequential(

nn.Linear(conv_output_size, self.config.linear_size),

.ReLU(),

nn.Dropout(self.config.dropout_keep)

)

Such 2 more block linear2, linear3

self.convolutional_layers =

nn.Sequential(conv1,conv2,conv3,conv4,conv5,conv6).cuda()

self.linear_layers = nn.Sequential(linear1, linear2, linear3).cuda()

def forward(self, embedded_sent):

_sent = embedded_sent.transpose(1,2)#.permute(0,2,1) #

shape=(batch_size,embed_size,max_len)

conv_out = self.convolutional_layers(embedded_sent)

conv_out = conv_out.view(conv_out.shape[0], -1)

linear_output = self.linear_layers(conv_out)

return linear_output

def reduce_lr(self):

for g in self.optimizer.param_groups:

g[‘lr’] = g[‘lr’] / 2

print(“Reducing Learning Rate to: “, g[‘lr’])

When the network is trained for some epochs, accuracy for

train and test set increases gradually, and loss decreases:

Figure 5.8: Plotting performance of character-level CNN on text

clarification task.

With the preceding implementation, we finally managed to get

over 80% accuracy for the test and training datasets. Entire

code with supporting function for text processing, training,

and validation can be found in the Jupyter notebook at

Ch5/using_character_level_cnn.ipynb.

The preceding network is great, but it is not optimized for

our small dataset; maybe we are using excessive layers in

their network. Try to cut out some of the layers from this

network to decrease the training parameters and see if the

network converges. Try to cut as many layers as possible, and

find out the lowest possible configuration that can efficiently

work on our data. Usually, this exercise to minimize the

network size is done once the network is found to be stable

and converging on the given dataset. Lowering the parameters

of the network brings the network to a simpler form, helping

avoiding high variance and overfitting-related problems.

You can refer to the following links:

Character-level convolutional networks for text classification:

https://arxiv.Org/pdf/1509.01626.Pdf

Words vs. character n-grams for anti-spam filtering:

http://www.Icsd.Aegean.Gr/lecturers/stamatatos/papers/ĳait-spam.Pdf

Using Very Deep Convolution Network

At the beginning of this chapter, we saw that the use of

CNN is catching up in text processing. To help you

understand the importance of the deeper architecture, here’s

another example whereby we will use a very deep convolution

neural network for text classification. In this recipe, we will

understand and implement the work reported in the research

paper Very Deep Convolutional Networks for Text Classification

by Alexis Conneau and coworkers working with Facebook AI

research. This paper claims that with 29 layers deeper

network, the model can beat previously reported state-of-the-

art techniques.

The deep convolution network goes up to 49 layers deep, and

state-of-the-art configuration can be achieved on text

classification tasks by going deeper up to 29 convolutional

layers. This model is for text classification, and we particularly

chose this model for this recipe. There is a stronger reason

to select this model—it is organized into blocks; each block

repeats and has an optional shortcut connection between the

blocks. This model will provide a sense of understanding of

how modern networks are going deeper by modifying the

traditional architecture. In the next recipe, we will go one step

further and understand the various types of changes in the

network that promises training beyond 100 layers. The entire

network looks as in the following diagram:

Figure 5.9: Architecture of the very deep convolutional networks

for text classification as designed by Alexis Conneau and

coworkers.

The model takes character-based encoding as input. Let’s say

if our set has 1024 unique characters and we consider max

sentence length to be 64; then, the input to the model will

be [batch_size, 64, 1024]. This shape is then converted to

[batch_size, 1024, 16] by applying embedding to input.

Embeddings are shown as a lookup operation in the

preceding diagram. A convolution 1D with a filter size of 3 is

applied to the output generated by the embedding layer with

input dimension=16 and output dimension = 64. The output

of a 1D convolution is passed to the convolution block, which

has the following layers:

A 1D convolution layer

A batch normalization layer follows each convolution layer

Relu activation is applied to the output of the batch

normalization layer

The above-mentioned layers are repeated twice to provide

output

If the residual flag is the input given to this block is added

to the output (a residual connection)

This convolution block is repeated with different input

channels and output channels. Blocks have and 512 input

channels and output channels in the entire network.

Depending on the depth of the network, different blocks are

used in different numbers. Depending on the depth, blocks

are repeated in the following pattern: **

** ** ** ** ** ** **

**

**

**

**

Table 5.3

In the next section, we will learn how to design such a

network with changing depth according to applied parameters.

Batch normalization: It is a technique to normalize the

internal structure of the data for faster training. Min-max

normalization can be taken as simple normalization technique

and can be mathematically given as:

It normalizes the gen range between 0 and 1. Similarly, batch

norm is the normalization of the output in the hidden layer

and can be mathematically given as:

Input: Value of x over a mini batch: B =

Parameters to be learned γ, β

BatchNorm has the following benefits:

Network trains As the additional layer is added and additional

parameters are added to the backpropagation graph, the

iteration will be slower. That said, the network will converge

faster.

Allows higher learning SGD requires small learning rates but

deeper networks face the problem of vanishing gradients with

lower learning rates, so they will take a longer time to train

such networks with lower learning rates. Batch normalization

allows training the network with a higher learning rate.

Makes weight easier to Weight initialization is tricky for

deeper networks. Batch normalization makes the network

relatively insensitive to initial weights, offering better

convergence.

Makes activation function more Sigmoid loses the gradient

quickly, and ReLu dies out in the deeper network. As the

normalized input is given to the activation after passing

through the batch norm, it solves the activation die-out

problem.

Simplifies the creation of deeper Over 4 points if taken care,

it offers faster and better training of deeper networks.

Provides some Batch norm also adds noise to the network

and has some regularization effect.

The Convolution Block

Convolution block is defined with the ConvBlock function. The

following network is common for each convolution block

shown in the preceding diagram. The convblock function has

the following layers:

A batch normalization layer

A convolution 1D layer

An activation function

These layers were repeated twice and followed by residual

addition. If the shortcut parameter to the init method of this

class is True, the input to this block is added to the output

after all the layers. In the PyTorch batch, normalization can

be simply used as follows:

batchnorm1 = nn.BatchNorm1d(n_filters)

output = batchnorm1(input)

nn.BatchNorm1d is applied to 1D input, and likewise, PyTorch

has an implementation for 2D and 3D shapes as nn.

BatchNorm2d and BatchNorm3d, respectively. BatchNorm is

always applied after the activation function:

class ConvBlock(nn.Module):

def __init__(self, input_dim=128, n_filters=256, kernel_size=3,

padding=1, stride=1, shortcut=False, downsampling=None):

super(ConvBlock, self).__init__()

self.downsampling = downsampling

self.shortcut = shortcut

self.conv1 = nn.Conv1d(input_dim, n_filters,

kernel_size=kernel_size, padding=padding, stride=stride)

self.batchnorm1 = nn.BatchNorm1d(n_filters)

self.relu1 = nn.ReLU()

self.conv2 = nn.Conv1d(n_filters, n_filters,

kernel_size=kernel_size, padding=padding, stride=stride)

self.batchnorm2 = nn.BatchNorm1d(n_filters)

self.relu2 = nn.ReLU()

def forward(self, input):

residual = input

output = self.conv1(input)

output = self.batchnorm1(output)

output = self.relu1(output)

output = self.conv2(output)

output = self.batchnorm2(output)

if self.shortcut:

if self.downsampling is not None:

residual = self.downsampling(input)

output += residual

output = self.relu2(output

return output

Understanding the Network

This network is constructed a little differently than we did

until now. To construct the network, an empty list is taken as

layers = and all the required layers according to the specified

depth are appended to this list. For example, if the network

has a depth of 9, 1 ConvBlock, each having input and output

size equal to and 512 are added. As the depth increases, the

variable number of such blocks is considered, and the

network is constructed accordingly. This method is good for

the network with variable layers, and the architecture changes

with the selection of parameters. At the end, the list layers

with all the required layers that need to be included in the

network are added to the Similarly, the fully connected layers

at the end of the network are constructed:

class VDCNN(nn.Module):

def __init__(self, n_classes=2, num_embedding=69,

embedding_dim=16, depth=9, n_fc_neurons=2048,

shortcut=False):

super(VDCNN, self).__init__()

layers = []

fc_layers = []

base_num_features = 64

self.embed = nn.Embedding(num_embedding, embedding_dim,

padding_idx=0, max_norm=None,

norm_type=2, scale_grad_by_freq=False, sparse=False)

layers.append(nn.Conv1d(embedding_dim, base_num_features,

kernel_size=3, padding=1))

if depth == 9:

num_conv_block = [0, 0, 0, 0]

elif depth == 17:

num_conv_block = [1, 1, 1, 1]

elif depth == 29:

num_conv_block = [4, 4, 1, 1]

elif depth == 49:

num_conv_block = [7, 7, 4, 2]

layers.append(ConvBlock(input_dim=base_num_features,

n_filters=base_num_features, kernel_size=3, padding=1,

shortcut=shortcut))

for _ in range(num_conv_block[0]):

layers.append(ConvBlock(input_dim=base_num_features,

n_filters=base_num_features, kernel_size=3, padding=1,

shortcut=shortcut))

layers.append(nn.MaxPool1d(kernel_size=3, stride=2, padding=1))

ds = nn.Sequential(nn.Conv1d(base_num_features, 2 *

base_num_features, kernel_size=1, stride=1, bias=False),

nn.BatchNorm1d(2 * base_num_features))

layers.append(

ConvBlock(input_dim=base_num_features, n_filters=2 *

base_num_features, kernel_size=3, padding=1,

shortcut=shortcut, downsampling=ds))

for _ in range(num_conv_block[1]):

layers.append(

ConvBlock(input_dim=2 * base_num_features, n_filters=2 *

base_num_features, kernel_size=3, padding=1,

shortcut=shortcut))

layers.append(nn.MaxPool1d(kernel_size=3, stride=2, padding=1))

ds = nn.Sequential(nn.Conv1d(2 * base_num_features, 4 *

base_num_features, kernel_size=1, stride=1, bias=False),

nn.BatchNorm1d(4 * base_num_features))

layers.append(

ConvBlock(input_dim=2 * base_num_features, n_filters=4 *

base_num_features, kernel_size=3, padding=1,

shortcut=shortcut, downsampling=ds))

for _ in range(num_conv_block[2]):

layers.append(

ConvBlock(input_dim=4 * base_num_features, n_filters=4 *

base_num_features, kernel_size=3, padding=1,

shortcut=shortcut))

layers.append(nn.MaxPool1d(kernel_size=3, stride=2, padding=1))

ds = nn.Sequential(nn.Conv1d(4 * base_num_features, 8 *

base_num_features, kernel_size=1, stride=1, bias=False),

nn.BatchNorm1d(8 * base_num_features))

layers.append(

ConvBlock(input_dim=4 * base_num_features, n_filters=8 *

base_num_features, kernel_size=3, padding=1,

shortcut=shortcut, downsampling=ds))

for _ in range(num_conv_block[3]):

layers.append(

ConvBlock(input_dim=8 * base_num_features, n_filters=8 *

base_num_features, kernel_size=3, padding=1,

shortcut=shortcut))

layers.append(nn.AdaptiveMaxPool1d(8))

fc_layers.extend([nn.Linear(8 * 8 * base_num_features,

n_fc_neurons), nn.ReLU()])

fc_layers.extend([nn.Linear(n_fc_neurons, int(n_fc_neurons/2)),

nn.ReLU()])

fc_layers.extend([nn.Linear(int(n_fc_neurons/2), n_classes)])

self.layers = nn.Sequential(*layers)

self.fc_layers = nn.Sequential(*fc_layers)

self.__init_weights()

def __init_weights(self):

for m in self.modules():

if isinstance(m, nn.Conv1d):

kaiming_normal_(m.weight, mode=’fan_in’, nonlinearity=’relu’)

def forward(self, input):

output = self.embed(input)

output = output.transpose(1, 2)

output = self.layers(output)

output = output.view(output.size(0), -1)

output = self.fc_layers(output)

torch.softmax(output, dim=1)

return output

I used the network with nine layers on the IMDB movie

review data. The IMDB movie review dataset or the Large

Movie Review Dataset has 25,000 movie reviews with binary

labels. DeepConv gives stunning results on this dataset. On

the train set, t already achieved 99% accuracy, and it

achieved 80% accuracy on the test set. The accuracy/loss vs.

epoch plot is illustrated here:

Figure 5.10: Increase in train and test accuracy and decrease in

train loss with epoch when deep convolution network is trained

on the IMDB movie review data.

The implementation of the deepConv for text classification is

given at

This network is built such that it can be modified to obtain

better convergence. You can try different depths and which

one you get the highest results at.

Compare the convergence with the residual layer when it is

applied, versus when the residual layer is not applied.

Compare the convergence with batch normalization it is

applied versus when batch normalization is not applied. Also

compare results when batch normalization is kept before and

after the activation function.

Chop out this network by commenting on different blocks and

check the minimum configuration required to get the best

results on the given data.

You can refer to the following links:

Batch normalization: Accelerating deep network training by

reducing internal covariate shift: https://arxiv.org/abs/1502.03167

Very deep convolutional networks for text classification:

https://arxiv.org/pdf/1606.01781.pdf

Learning word vectors for sentiment analysis:

https://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf

Training Deeper Networks

When it comes to the network design, the direct indication is,

the more, deeper, and better it is. A few years ago, the best

networks had around 10-12 layers, whereas they are going

hundreds of layers deeper nowadays. Stacking hundreds of

layers and training such a deeper network on powerful GPU

just doesn’t work. This type of network requires architecture

changes. These architectural changes can be better understood

by understanding successful deeper architecture like

HighwayNet, DenseNet, and ResNet. In this recipe, we will

discuss Highway network in detail and correlate the learning

with the architecture of DenseNet and ResNet.

The first question is, why does going deeper by just the

stacking layer not work? In a smaller network with less than

ten layers, stacking the layers one over another and training

such a network might work. Such a model’s performance

degrades exponentially when more layers are added. The root

of performance degradation lies at backpropagation operation.

When such a model is trained with back-propagation, the

gradient diminishes after each layer. When such a gradient

reaches the very first layer, it diminishes such that the weight

for this layer cannot be updated. Due to this, learning cannot

be imparted to the first layer. This is also referred to as the

vanishing gradient problem.

ResNet

We have figured the problem with the deeper network, so we

can now understand the measures to solve this problem. The

first candidate that tries to solve the vanishing gradient

problem and move deeper is ResNet. A ResNet has 34 layers,

and each layer is an identical block connected to the previous

and the next layer:

Figure 5.11: ResNet block

The branch in blue is where convolution operations are

applied, and the branch where only ReLu activation is applied

and merged with the first branch’s output.

Residual connections connect each of these. A network

without residual block has a stacked-layer, and it follows y =

where y is the output, and can be any function involving

convolution, dense layers, and non-linearity. In the

backpropagation phase, these operations, along with non-

linearity, resist the flow of the gradient, leading to the

vanishing gradient problem. A network with residual block has

y = + where the addition x is a kind of shortcut that allows

the backpropagation signals to flow backward without any

hindrance.

Highway Network

The highway network was proposed by researchers working at

The Swiss AI Lab Istituto DalleMolle di Studisull’ Intelligenza

Artificiale including Jurgen Schmidhuber, who is an inventor of

the Long Short Term Memory (LSTM). Highway network

claims to optimize 900 layers deep network with stochastic

gradient descent and momentum. It is observed that network

parameters optimization with highway network is independent

of depth. At the same time, a plain network without a

highway suffers greatly with increasing layers. Highway

networks take the concept of ResNet one step ahead by

introducing learnable parameters into the shortcut. Learning

function H with input weight producing output y can be

defined as:

Y = •

Now, we introduce two gates to the preceding function: a

transform gate and a carry gate The resultant equation can

be defined as:

y = · + x ·

For simplicity in this paper, the author takes an assumption—

C = Finally, the layer in the highway network is defined as

follows:

y = • + x • (1 –

DenseNet

The dense layer takes the thought process of the Highway

network one step ahead. The Highway network states that the

skip connection from the previous layer to the next layer

improves performance. In DenseNet, a layer is connected to

all its previous layers by skip connections. In this way,

information always has a direct route backward in the back

propagation. Here, in the dense network, the layer receives

direct input from all its previous layers. Here, ….., refers to

the concatenation of the feature-maps produced in layers 0,

….., Due to this dense connectivity, the network is known as

DenseNet.

We saw three networks with somewhat similar approaches to

facilitate deep architectures. Now, we will explore minimal

implementation of these networks using PyTorch. For

simplicity, we will implement a single block for each network.

Fundamental Block of ResNet

ResNet has two main functions to construct the working

ResNet model. One function is named which constructs a

block of the 3*3 convolution2D layer, along with batch

normalization and Relu as an activation function. The

schematic code function is as shown:

class ResidualBlock(nn.Module):

def __init__(self, in_channels, out_channels, stride=1,

downsample=None):

super(ResidualBlock, self).__init__()

self.conv1 = nn.Conv2d(in_channels, out_channels,

kernel_size=3, stride=stride, padding=1, bias=False)

self.bn1 = nn.BatchNorm2d(out_channels)

sself.relu = nn.ReLU(inplace=True)

self.conv2 = nn.Conv2d(in_channels, out_channels,

kernel_size=3, stride=stride, padding=1, bias=False)

self.bn2 = nn.BatchNorm2d(out_channels)

self.downsample = downsample

def forward(self, x):

residual = x

out = self.conv1(x)

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

if self.downsample:

residual = self.downsample(x)

out += residual

out = self.relu(out)

return out

Another function is ResNet, which takes ResidualBlock blocks

and connects them into one network, as shown below.

ResNet has a make_layer definition that takes these layers

and stacks them with one another to residual connection:

class ResNet(nn.Module):

def __init__(self, block, layers, num_classes=10):

super(ResNet, self).__init__()

self.in_channels = 16

self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3,

stride=stride, padding=1, bias=False)

self.bn = nn.BatchNorm2d(16)

self.relu = nn.ReLU(inplace=True)

self.layer1 = self.make_layer(block, 16, layers[0])

self.layer2 = self.make_layer(block, 32, layers[1], 2)

self.layer3 = self.make_layer(block, 64, layers[2], 2)

self.avg_pool = nn.AvgPool2d(8)

self.fc = nn.Linear(64, num_classes)

def make_layer(self, block, out_channels, blocks, stride=1):**

downsample = None

if (stride != 1) or (self.in_channels != out_channels):

downsample = nn.Sequential(conv3x3(self.in_channels,

out_channels, stride=stride),nn.BatchNorm2d(out_channels))

layers = []

layers.append(block(self.in_channels, out_channels, stride,

downsample))

self.in_channels = out_channels

for i in range(1, blocks):

layers.append(block(out_channels, out_channels))

return nn.Sequential(*layers)

def forward(self, x):

out = self.conv(x)

out = self.bn(out)

out = self.relu(out)

out = self.layer1(out)

out = self.layer2(out)

out = self.layer3(out)

out = self.avg_pool(out)

out = out.view(out.size(0), -1)

out = self.fc(out)

return out

model = ResNet(ResidualBlock, [2, 2, 2]).to(device)

Fundamental Block of Highway Network

The highway network can be implemented very easily, as

shown in the following code block. Each layer will have a

highway with learnable parameters can be simply represented

as x = gate * nonlinear + (1 - gate) * linear

class Highway(nn.Module):

def __init__(self, size, num_layers, f):

super(Highway, self).__init__()

self.num_layers = num_layers

self.nonlinear = nn.ModuleList([nn.Linear(size, size) for _ in

range(num_layers)])

self.linear = nn.ModuleList([nn.Linear(size, size) for _ in

range(num_layers)])

self.gate = nn.ModuleList([nn.Linear(size, size) for _ in

range(num_layers)])

self.f = f

def forward(self, x):

“””

:param x: tensor with shape of [batch_size, size]

:return: tensor with shape of [batch_size, size]

applies σ(x) ʘ (f(G(x))) + (1 - σ(x)) ʘ (Q(x)) transformation |

G and Q is affine transformation,

f is non-linear transformation, σ(x) is affine transformation

with sigmoid non-linearition and ⨀ is element-wise

multiplication

“””

for layer in range(self.num_layers):

gate = F.sigmoid(self.gate[layer](x))

nonlinear = self.f(self.nonlinear[layer](x))

linear = self.linear[layer](x)

x = gate * nonlinear + (1 - gate) * linear

return x

DenseNet

Dense network implementation is beyond the scope of this

book. DenseNet is mainly used for image-related uses cases.

To know more about how dense net is implemented, visit

These concepts are very new, and we have not implemented

ResNet, highway Network, and DenseNet to keep this book

focused. However, we will learn about ELMo embedding that

uses highway networks in Chapter 6, Accelerating NLP with

Transfer You can try developing ResNet and DenseNet in

PyTorch; this will greatly help you in reinforcing your

convolution network implementation skills. There are many

working examples available on GitHub, and these resources

can help you when you are stuck.

You can check out the following links:

Deep residual learning for image recognition:

https://arxiv.org/pdf/1512.03385.pdf

Highway networks: https://arxiv.org/pdf/1505.00387.pdf

Densely connected convolutional networks:

https://arxiv.org/pdf/1608.06993.pdf

Conclusion

This chapter brought some new experiences. You may have

known convolutional neural network as the technique to

process images and video before starting this chapter, but

your perspective might have changed now. In this chapter, we

understood the basics of CNN, and we also applied it to

tasks like text classifications. We saw that there is no limit to

the point where CNN can be used in NLP. We applied CNN

at the character and word-level, and we also implemented a

very deep convolutional network for text classification. CNN is

advanced as compared to the RNN networks. CNN

considered to be embarrassingly parallelizable and fully utilize

power of parallel processors like GPU. On the other hand,

RNN is recurrent, so sequential input is required so it utilize

GPU like device to a comparatively lesser extent.

In the next chapter, we will learn about accelerating NLP with

transfer.

CHAPTER 6

Accelerating NLP with Transfer Learning

This chapter will help us apply our previous learnings to

various NLP tasks. Here, we will cover topics like sentiment

analysis, topic modeling, text generator, named entity

recognition, language transliteration, and text summarization.

For each of the topics, various advanced models with CNN

and LSTM components are deployed. We will also understand

how to achieve the state-of-the-art results.

Structure

The following recipes will be covered in this chapter:

Introduction

Understanding the transformer

Converting sentence to vector

Getting to know contextual vectors

Training supervised embedding

Understanding and using BERT

Objective

Discuss more recent advancements like a transformer,

character-based contextual embedding like ELMo, and sentence

vectorization techniques like SkipThought and InferSent.

Coding required fragments of each model.

Forming a complex model that we will discuss in the next

chapter.

Pre-requisites

The codes for this chapter can be found in the Ch6 folder at

GitHub repository To understand this chapter, you must have

some basic knowledge about the following Python packages:

Gensim

NLTK

NumPy

Torch

Matplotlib

SciPy

You can install these requirements by installing all the

packages listed in requirements.txt simply by issuing pip

install -r

Introduction

This chapter explains an important aspect of the NLP, i.e.,

using the pre-trained model. The pre-trained model is used

just like image processing. It can also be considered a

method to perform transfer learning in NLP, just like the

same concept exists in image processing. The language task

can be anything like classification, language translation,

summarization, named entity recognition, and such. Each task

starts with textual data relevant to the task. This data is then

converted to word level or sentence level vectors using

various models like ELMo-Bilm, BERT, SkipThought,

Transformer, InferSent, etc. These dense vectors are then

processed downward with various layers like LSTM or CNN or

dense layers to produce the required output. The following is

an illustration of how to use transfer learning:

Figure 6.1: Transfer learning in the NLP.

In this chapter, all the models have an average parameter

size in tens of millions. Training these models from scratch

requires enormous computing power, so the training of such

models is usually done using multiple GPUs or TPUs. Such

models are already trained on very large datasets, and they

adapt to the new domain by pre-training on a very small

amount of domain-specific data. In this entire chapter, we will

use the pre-trained model to get word/sentence vectors. In

some cases, we will do pre-training. These embeddings can

be used for downward tasks like classification, summarization,

or translation.

Understanding the Transformer

In Chapter 4, Using RNN for we understood and used the

attention mechanism to increase the accuracy of the

translation model. That said, the model was based on the

recurrent unit and was slow. The transformer uses the

concept of attention and provides faster implementation with

slight modification. The transformer model was also found to

beat state-of-the-art language translation and summarization

techniques in many tasks. The transformer was proposed in

the paper “Attention is all you need” by the Google brain

team.

Before we go ahead, I would like to give you a rough

understanding of what the transformer does with the following

diagram. The transformer, as is understood by its name, is

used to transform one form into another:

Figure 6.2: The overall idea of the working of transformer.

Internally, the transformer is an encoder-decoder model.

Encoder and decoder are made up of repeating subblocks, as

shown in the following diagram:

Figure 6.3: Encoder-decoder arrangement in transformer.

The encoder is identical in structure with all others. An

encoder is made up of two sub-components: a self-attention

layer and the feedforward network in it. At the same time,

the decoder is made up of three components: a feedforward

layer, encoder-decoder attention, and a self-attention layer.

Going Now that we have explored the basic building block of

the model, it’s time to understand how information flows

between different components of the model and is modified

by the various operations applied. In the bottom-most

encoder, the input of the word after passing through

embeddings is provided. The embedded input is only required

in the bottom-most encoder. Another encoder block will only

take the output of the previous encoder after embedding each

of the word flow through both the layers in the encoder, as

shown here:

Figure 6.4: A few details of the layers present in the encoder.

The key property of the transformer is that all the tokens

travel through all the blocks independently. The interaction

between different words occurs in the self-attention layer and

travels independently through the feedforward network.

Self-attention: Self-attention is the concept to find the relation

between words. It is the layer where the network relates two

words and tries to find the relationship between them. Let’s

first understand how self-attention works, and then we will

implement it using matrix operations. The first step is to

construct three vectors from the embeddings. So, each word

will create the key vector, a query vector, and a value vector.

These vectors are created by multiplying embedding with three

matrices that are learned during training. Note that the

resultant vector after multiplication is smaller in dimension

(64) than the original dimension (512). This size is

configurable, and the numbers here are purely for

demonstration purposes:

Figure 6.5: Understanding self-attention mechanism.

The query key and the values vector shown here are used to

calculate the attention between two words in the sentence.

The attention score will help associate related words and will

be calculated as shown below:

Figure 6.6: The steps involved in self-attention.

The attention score is calculated in the followings steps:

Key, query, and value are formed by multiplying inputs to the

and matrices, respectively.

Query and key are multiplied for a score.

The score is divided by the square root of key shape. e.g., 8

in our case.

Soft-max of the above score is calculated for normalization

purposes.

The calculated soft-max score is then multiplied to the value,

and the resultant output is given out for each word from the

self-attention layer.

After understanding the process of attention, we will look at

how this process will be carried out as matrix operations:

Figure 6.7: Matrix-level operations to implement self-attention.

The entire process of self-attention is summarized above with

matrix operations. This paper takes the concept of transformer

one step ahead and implements a concept caller multi-head

attention. Multi-layer attention improves the performance of

the attention layer in two ways.

It helps the attention look at multiple words and often helps

resolve the sense of the word. For example, if “it” is present

in the sentence, which word in the sentence does it refer to?

Multi-headed attention has multiple copies of Query, Key and

Value matrices and so, it helps learn in multiple spaces. Each

set of these multiple copies is initialized with multiple copies.

The concept of multi-head attention with two heads is shown

here:

Figure 6.8: A rough idea of multi-head attention.

At the end of each multi-head attention, we get corresponding

output matrix z, and if we perform the multi-head attention

eight times, we get eight z matrices Having eight z matrices

is a challenge. The next encoder module is expecting only

one z matrix for each word. To solve this, we will multiply

the resultant matrix formed after the multiplication of eight z

matrices with another matrix This matrix is learned in the

training process, which is as shown here:

Figure 6.9: How final output shape from the multi-head

attention is made the same as the output from one head by

applying addition learnable matrix.

This is pretty much all about the multi-head attention

techniques. All multi-head techniques can be put into a single

figure, as illsutrated here:

Figure 6.10: Summarizing multi-head attention.

This is all about multi-head attention. The innovative approach

in the transformer does not stop here, and it has many more

things to achieve state-of-the-art results. The next concept is

positional encoding.

Positional The order of placement of the word in the

sentence is important. So far, we have used various

embedding techniques, and we were only taking the vector for

the individual word without considering the order of the

words. Personal embeddings also consider the order of the

word while generating embeddings. Let’s say we have an

embedding vector size of 4; it is added with a positional

encoding vector before injecting it into the self-attention

module. This positional encoding vector transforms the

embedding vector so that it also represents the order of

placement of words in the sentence. The concept of

positional embedding is diagrammatically shown as follows:

Figure 6.11: The ideology behind positional encoding.

Residual The in-detail structure of the encoder or the decoder

includes a residual connection. This residual connection

function is similar to skip connection discussed in Chapter 5,

Applying CNN In NLP These residual connections aid better

convergence by allowing efficient back-propagation. In addition

to residual connection, each encoder or decoder block has

“add and normalize layer.” The “add and normalize layer”

helps add various inputs and helps in normalizing before

output. The following is a detailed diagram of encoder and

decoder with all essential connections:

Figure 6.12: The overall process of translation along with residual

connections present in the encoder and decoders.

We pretty much know everything about encoder. On the

decoder side, the final key Query and Value vector are

received, and this serves as the initial key for the decoder. At

time t = 0, the token is fired, and on the other side, after

passing through all the decoders, a linear and soft-max layer

provides the output token. Each decoder receives the final

encoder state separately. The output at t=1 is fed again to the

decoder along with the encoder state to yield the next token

at t = 2. It is similar to the teacher forcing mechanism we

learned in Chapter 4, Using RNN for Similarly, all tokens will

be translated into another language.

Source and Target Masking

Coding the entire transformer will be a great experience; in

this section, we will only implement a few important concepts

of the transformer model. In this section, we will understand

how masking and positional encoding works by practically

implementing and visualizing them. I will use the following

parameters to demonstrate masking and positional encoding

in the later sections.

opt = {“d_model”:512, “trg_pad”:1,”src_pad”:1}

Here, d_model is the number of hidden states for the

encoder and decoder of the transformer.

Masking has two functions in the transformer network:

In encoder and decoder, to give zero attention output

wherever it is padding in the input and target sentences,

respectively.

In decoder, to prevent the decoder from cheating by looking

(peaking) ahead of the sequences.

Let’s code a dummy source and target sequence to

understand these facts. Our dummy source and target

sequence looks as follows, where we have taken source

sequence equal to the target sequence. Each sentence is

present in each column, and the length of each sentence is

made equal by padding = 1:

src = torch.tensor([

[2, 3, 4, 5, 6, 7, 8, 9],

[2, 7, 7, 4, 2, 4, 3, 4],

[3, 6, 8, 5, 2, 1, 3, 4],

[4, 7, 9, 6, 3, 1, 7, 1],

[5, 7, 2, 7, 3, 1, 8, 1],

[1, 6, 2, 8, 4, 1, 8, 1],

[1, 1, 1, 1, 5, 1, 9, 1],

[1, 1, 1, 1, 5, 1, 1, 1]])

trg = src

The next step is to create the nopeak_mask function that

restricts the decoder peaking ahead of the current decoding

sequence in the target sequences:

defnopeak_mask(size, opt):

np_mask = np.triu(np.ones((1, size, size)),k=1).astype(‘uint8’)

np_mask = Variable(torch.from_numpy(np_mask) == 0)

return np_mask

We also need a create_masks function to take the source and

target function and apply it to the mask:

defcreate_masks(src, trg, opt):

src_mask = (src != opt[“src_pad”]).unsqueeze(-2)

if trg is not None:

trg_mask = (trg != opt[“trg_pad”]).unsqueeze(-2)

size = trg.size(1) # get seq_len for matrix

np_mask = nopeak_mask(size, opt)

trg_mask = trg_mask&np_mask

else:

trg_mask = None

return src_mask, trg_mask

src_mask, trg_mask = create_masks(src,trg,opt)

Using the plotting function given at the

Ch6/understanding_the_transformer.ipynb script, the source

masks look like this:

Figure 6.13: Masking applied to source sentences in the

transformer.

A single source sentence is shown here as the column.

Wherever padding is applied as 1, the sentence seems to be

truncated. The source masks also have 1 up to the length of

each sentence and zero after that. This way the mask is

generated. If you look at the target mask, it is a bit tricky to

understand:

Figure 6.14: Making applied to the decoder in the transformer.

Usually, the decoder’s task is to take the encoder output and

produce output by teacher forcing the decoder. The mask

function here is to allow the decoder to only look at the

current sequence and mask all future sequences. Note that

wherever padding is applied to the source sequence, the

decoder has a mask. After two target masks from top left

corner in the third target mask, the fifth sequence is masked

because, in the source sentence, the fifth column (sentence)

is made up of only two words.

Positional Encoding

As we understood in the previous section, positional encoding

is applied to give the encoder and decoder a sense of the

position of the word in the sequence. As described in the

paper, the positional embedding can be mathematically given

as follows:

Here, pos refers to the order in the sentence, and i refers to

the position along the embedding vector dimension. Each

value in the matrix is then worked out using the preceding

equations. The same logic can be implemented as follows:

class PositionalEncoder(nn.Module):

def __init__(self, d_model, max_seq_len = 80):

super().__init__()

self.d_model = d_model

create constant ‘pe’ matrix with values dependant on

pos and i

pe = torch.zeros(max_seq_len, d_model)

for pos in range(max_seq_len):

for i in range(0, d_model, 2):

pe[pos, i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))

pe[pos, i + 1] = math.cos(pos / (10000 ** ((2 * (i +

1))/d_model)))

pe = pe.unsqueeze(0)

self.register_buffer(‘pe’, pe)

def forward(self, x):

make embeddings relatively larger

x = x * math.sqrt(self.d_model)

#add constant to embedding

seq_len = x.size(1)

x = x + Variable(self.pe[:,:seq_len],requires_grad=False)

return x, self.pe

PE = PositionalEncoder(opt[“d_model”])

When plotted, positional embeddings will look like this:

Figure 6.15: The first is source input, the positional embedding is

generated and added to source input to add a sense of position

in the source input (third subplot).

All the implementation discussed here are given in the

Ch6/understanding_the_transformer.ipynb Jupyter notebook.

The intent of the transformer was a very important research

milestone. The transformer constitutes the core component of

many models like BERT, ELMo, and ULMFiT. The

implementation of the transformer will help us understand all

the transformer-derived models. The step-by-step

implementation is out of the scope of this book, but you can

always refer to the “The Annotated Transformer” post, where

all the individual parts of the transformer are beautifully

explained with the code.

You can refer to the following links:

Attention is all you need: https://arxiv.org/abs/1706.03762

PyTorch implementation of opener’s fine-tuned transformer:

https://github.Com/huggingface/PyTorch-openai-transformer-lm

Converting Sentence to Vector

In Chapter 3, Representing Language we saw methods like

word2vec, Fasttext, and glove, which converts a given token/

word into a float vector of n dimensions. However, it isn’t

enough if we need to compare semantic similarity between

two sentences. With word tokenizer, there is no feasible way

to find the similarity between two sentences. We require

techniques to convert a sentence directly into the vector. One

of the techniques to convert the sentence to vector is the

skip through technique. SkipThrought was devised by

researchers at the University of Toronto. Another technique is

doc2vec, which was invented by Thomos Mikolov, the Google

researcher. We will see both the techniques in detail in the

upcoming sections, along with their working and

implementation.

The possible application of converting a sentence to a vector

could be the following:

Converting sentence to a vector so that downward tasks like

classification, summarization, and language translation can be

carried out easily.

Comparing two sentences semantically.

Our goal is to learn vectors from the sentence so that they

can be used for semantic similarity or relatedness between

sentences. The next question is, why can’t we use Word2Vec

for this? Can’t we apply any technique over word vector to

compare two sentences? Let’s assume that we have word

vectors for the sentence. The one way to get the sentence

representation is by finding the centroid for all the words. If

so, the distance between two sentences can be found using

centroid distance. The same thing can be extrapolated for

paragraph or document comparison. This method neglects the

characteristics of the language that each word has meaning

according to its order of placement and the contextual words.

A word’s placement in a sentence has significance, and by

taking centroid, we are treating all words with equal

significance. Let’s take an example to understand this.

Suppose we have two sentences:

You are going there to earn not learn

You are going there to learn not to earn

Both these sentences carry different meanings, but if centroid

based similarity is found, both words will be regarded as

similar. This concept was little more enhanced in the paper

“From Word Embeddings To Document Distances,” published

in EMNL 14. According to this paper, if two sentences are

given, we take minimum distance from each word of sentence

1 to sentence 2 and add them, as shown below:

Obama speaks to the media in Illinois

The President greets the press in Chicago

Figure 6.16: Word mover’s distance.

To generate vector as shown in the diagram 6.15, all stop

words were removed, and the word embedding is calculated.

The distance between the two documents is the minimum

cumulative distance that all words in document 1 need to

travel to exactly match document 2.

It approaches in inspired form rules and logic. It is just a

preliminary approach, and the major drawback is that it is

not considering the order and semantic meaning of the word.

The Paragraph Vector is based on a neural network model.

The Paragraph Vector method can represent variable size

sentence paragraph and document into a fixed-size vector. It

is an unsupervised algorithm that converts any sentence

paragraph and document to the fixed-size vector:

Figure 6.17: A framework for learning word vectors.

The context of four words (The, Monkey, sat, on) is used to

predict the fifth word (tree). The input words are mapped to

a column of the matrix W to predict the output words.

In this method, every word is mapped to a unique vector and

represented by a column in a matrix W. The column is

indexed by the position of the word in the vocabulary. The

concatenation and/or sum of the vector is used as a feature

to predict the next word in the sentence. Mathematically, if

we have the words, the end goal is to enhance the average

log probability of given all other context words:

The prediction is made via multi-class classification like

softmax. In practice, hierarchical softmax is preferred to

softmax for fast training:

The detailed approach, as shown below, has a paragraph

vector; every paragraph is mapped to a column in the vector

D, and every word is mapped to a column in vector W. The

matrices W and D are averaged or concatenated to predict

the next word in the sentence. Hidden vector is constructed

from the combination of W and D. In this process, the

model is compelled to predict the next word using word and

sentence level feature. In turn, the model’s memory starts

remembering information related to the sentence. Due to this

reason, this model is known as Paragraph Vector - Distributed

Memory model The schematic representation of the model is

as shown in figure

SkipThought SkipThought is an encoder-decoder model to

learn the nuance of sentences in an unsupervised way. The

paragraph vector is an intra-sentence model, whereas skip

thought is an inter-sentence model. If you have gone through

the skip-gram approach in Chapter 3, Representing Language

the same approach is followed here at the sentence level. The

SkipThought model has three parts: one encoder and two

decoders, as shown in this schematic diagram:

Figure 6.18: An illustration of how SkipThought works; it has

one encoder and two decoders.

The encoder takes a current sentence, one decoder predicts

the previous sentence to the given sentence, and another

decoder predicts the next sentence to the given sentence.

The Encoder network: It takes the network and converts it

into fixed-length representation using GRU or LSTM. GRU/

LSTM takes each word of the sentence sequentially and, using

attention mechanism, generates the fixed-length vector z(i).

Previous decoder network: It takes the fixed vector

representation z(i) and generates the previous sentence x(i –

1) to the input sentence x(i).

Next decoder network: It takes the fixed vector representation

z(i) and generates the next sentence x(i + 11) to the input

sentence x(i).

The assumption behind the SkipThought vector is that the

placement of the sentence in the document has a meaning,

and this meaning is contextual with respect to the

neighboring sentences. If the network is compelled to output

context, sentences from the target on the network may start

learning the meaning of the sentence in the fixed-size dense

vector.

Sentence to Vector

In the section, we will see how Sentence2Vec can be

implemented with Doc2Vec. The next thing we will look at is

how to use skip-though vectors.

Sentence to This method is implemented as Doc2Vec in the

popular library Gensim. We will see how to use Gensim’s

implementation of Doc2Vec.

Loading and tagging

data = open(“Ch6/dataset/small_talk_test.txt”).read().splitlines()

tagged_data =

[TaggedDocument(words=word_tokenize(_d.lower()), tags=

[str(i)]) for i, _d in enumerate(data)]

The following are the various parameters given to training the

model. The dm parameter is used to define which algorithm

to use:

dm=1 means ‘distributed memory’ (PV-DM)

dm =0 means ‘distributed bag of words’ (PV-DBOW)

We have been introduced to these algorithms in the Getting

Ready… section of the recipe. The Distributed Memory model

preserves the word order in a document, whereas Distributed

Bag of words just uses the bag of words approach, which

doesn’t preserve any word order:

max_epochs = 100

vec_size = 20

alpha = 0.025

model = Doc2Vec(size=vec_size,

alpha=alpha,

min_alpha=0.00025,

min_count=1,

dm =1)

model.build_vocab(tagged_data)

for epoch in range(max_epochs):

print(‘iteration {0}’.format(epoch))

model.train(tagged_data,

total_examples=model.corpus_count,

epochs=model.iter)

decrease the learning rate

model.alpha -= 0.0002

fix the learning rate, no decay

model.min_alpha = model.alpha

model.save(“d2v.model”)

print(“Model Saved”)

The following code snippet performs the following

functionality:

Loading the model

Getting a vector for the sentence

Finding similar sentence

model= Doc2Vec.load(“d2v.model”)

#to find the vector of a document which is not in training

data

test_data = word_tokenize(“Now that you are

eighteen”.lower())

v1 = model.infer_vector(test_data)

print(“V1_infer : “, v1)

to find most similar doc using sentnce number

similar_doc = model.docvecs.most_similar(‘1’)

print(“Simillar Docs : “, similar_doc)

>>> V1_infer : [-0.01016486, .., 0.04624778]

>>>Simillar Docs : [(‘12’, 0.7584813833236694), .., (‘1113’,

0.724390983581543)]

The working implementation sentence to vector using Doc2Vec

is given at

Skip Thought

The SkipThought vector training is computationally very costly,

so we will take the existing model of the SkipThought and

see how to use the pre-trained model for the inference. The

implemetation for skip_thought is included in the code along

with the book in the Ch6 folder. The implementation gives in-

depth information about the following topics:

Installation of the SkipThought required Bazel, TensorFlow,

NumPy, sci-kit-learn, NLTK, and Gensim

Download pretrained You can download the model trained

book corpus using two configurations:

Unidirectional RNN encoder

Bidirectional RNN encoder

Training a Including training a model and running the training

script

Expanding the The generated pre-processing script contains

only 20,000 words, which are insufficient for many tasks.

SkipThought provides the expanding vocabulary function by

which one can increase the model vocabulary. It is based on

the “Translation Matrix” based methods, as described in the

“Exploiting Similarities Among Languages for Machine

Translation” paper.

Evaluating a Evaluation of the model on various datasets is

supported. These datasets include SICK-semantic relatedness

task, MSRP - Research Paraphrase paraphrase detection task,

MR - movie review sentiment task, CR - customer product

review task, SUBJ - subjectivity/objectivity task, MPQA -

opinion polarity task, and TREC - question-type classification

task. An extensive guide of how to use the SkipThought is

already provided at the GitHub repository, so this chapter

doesn’t have a working example of skip thought.

If you see the model, the encoder is just fine, but the

decoder has been assigned a herculean task. It’s very difficult

for humans as well to predict the next or previous sentence,

given the current sentence. This is the downside of this

model, and because of this reason, only the SkipThought

model produced an average result of 77% on various tasks.

Besides this, the model is bulky and required a cluster of

GPUs for training. The pre-trained model requires more than

32 GB RAM to use this model. The SkipThought model was

the first of its kind to produce sentence embedding with

considerable performance uplifting. In the upcoming recipes,

we will see how other models like Skip thought are used for

producing a fixed-sized vector from sentences.

Take a look at the following links:

Supervised from word embeddings to document distances:

http://proceedings.mlr.press/v37/kusnerb15.pdf

Distributed representations of sentences and documents:

https://cs.stanford.edu/~quocle/paragraph_vector.pdf

SkipThought vectors: https://arxiv.org/pdf/1506.06726.pdf

Exploiting similarities among languages for machine

translation.: https://arxiv.org/abs/1309.4168

Getting to Know Contextual Vectors

So far, we have seen many word vector representations,

including Word2Vec, Glove, and Fasttext. In all these

previously discussed methods, the vector for any given word

will be the same for entire documents. The word bank is

used for the financial institution, but it can also be the bank

of the river. For the technique mentioned above, the meaning

of the word bank is the same in both cases. This property of

the word bank to have different meaning as per the context

is called polysemic. ELMo was proposed in the paper Deep

contextualized word representations by Matthew E. Peters and

coworkers.

ELMo uses the bidirectional language model to generate

contextual word representation. The aim is to learn

representations that model the syntax, semantics, and

polysemy.

The word representations combine all layers of a deep pre-

trained neural network. 90M+

ELMo representations are purely character-based, allowing the

network to use morphological clues to form robust

representations for out-of-vocabulary tokens unseen in training.

The representation for each word depends on the entire

context in which it is used. ELMo model found to be

generating different vectors depending on the context of the

word, so it deals with Polysemy as well.

The architecture has two components:

Token A context-independent token representation is computed

with character convolution. Character representation from the

CNN layer is taken as input to the LSTM layers.

Bidirectional Language Model This layer follows the

conventional concept of predicting token forward given the

target token, and the token backward given the target token.

For the given sequence of N tokens the forward model

computes the probability of token given all the past tokens In

a probabilistic way, this can be represented as:

A backward language model runs similar to the forward

representation but in the reverse direction. A backward model

computes the probability of token given all the future tokens

…., In a probabilistic way, this can be represented as:

Along with forward and a backward ELMo representation, the

context-independent CNN-based representation is generated for

each token. The character representation for L layers of the

CNN having different filter size is generated, and then it is

passed through L layer of forwarding LSTM. For each token

K, the LSTM outputs a context-dependent representation

where j = 1, …, L. The top layer LSTM output, is used to

predict the next token with a softmax layer. For the backward

layer, the CNN represent is calculated as Both layers are

combined for the final representation as =

This was just an overview of the internal working of the

ELMo model. Finally, it has three outputs: one from

forwarding LSTM, one from backward LSTM, and one from

the CNN layer. The forward and backward LSTM are context-

aware, while the CNN output is content-independent. The

schematic representation of the model is as shown below:

Figure 6.19: Schematic diagram for the ELMo model. Character-

based input is given to the seven layers of the convolution neural

network with different filter sizes.

The output from all the CNN is concatenated into

convolution layer C. Then, this information passes through the

series of operations like aggregation, concatenate, element-wise

multiplication, linear operators, threading layers, part layers,

sequence reverse layers, sequence most layers, replication

layer, and finally, flatten layers. Their output will be given out

at: two from the LSTM layer and one from the CNN layer.

The info-graphic is inspired by

Using the Pre-trained Model

Allen AI has released an official version of the ELMo. By

using this API, you can use a pre-trained model to get

contextual embeddings of the token in the given sentence.

Installation:

!pip installallennlp

Quick usage:

From allennlp.commands.elmo import ElmoEmbedder

import scipy

elmo = ElmoEmbedder()

Getting Embeddings**

vectors = elmo.embed_sentence([“My”, “name”, “is”, “Sunil”])

vectors.shape

>>> (3, 4, 1024)

We have four words in the sentence. As we already know, the

ELMo embedding generates three embeddings for each word:

two from the LSTM layer and one from the CNN layer. Each

of these embeddings has a size of 1024, which is the size of

the highest number of convolution filters used in the ELMo

model. After checking contextual claim, it’s very clear that the

embedding for the word “Apple” is different for both

sentences. The difference is clear from the cosine difference

between the output generated by LSTM layers. CNN layer is

not contextual, so the cosine distance between two instance

of “Apple” is the same:

def get_similarity(token1, token2, token1_location,

token2_location):

vectors = elmo.embed_sentence(token1)

assert(len(vectors) == 3) # one for each layer in the ELMo

output

assert(len(vectors[0]) == len(token1)) # the vector elements

correspond with the input tokens

vectors2 = elmo.embed_sentence(token2)

print(“=”*50)

print(“Entity 1 : “,token1[token1_location], “ | Entity2 : “,

token2[token2_location])

print(“Shape of one of the LSTM vector : “, vectors[2]

[token1_location].shape)

print(“=”*50)

print(“cosine distance of 2nd bilstm layer vector”,

scipy.spatial.distance.cosine(vectors[2][token1_location],

vectors2[2][token1_location]))

print(“cosine distance of 1st bilstm layer vector”,

scipy.spatial.distance.cosine(vectors[1][token1_location],

vectors2[1][token1_location]))

print(“cosine distance of CNN layer vector”,

scipy.spatial.distance.cosine(vectors[0][token1_location],

vectors2[0][token1_location]))

return

get_similarity([“I”, “ate”, “an”, “Apple”, “.”], [“I”, “have”, “an”,

“iPhone”, “made”, “by”, “Apple”, “Inc”, “.”], 3, 6)

Entity 1 : Apple | Entity2 : Apple Shape of one of the LSTM

vector : (1024,)

cosine distance of 2nd bilstm layer vector 0.5723829865455627

cosine distance of 1st bilstm layer vector 0.5360225439071655

cosine distance of CNN layer vector 0.6341522932052612

The embedding for the word “Apple” is different for both

sentences. The difference is clear from the cosine difference

between output generated by LSTM layers. The CNN layer is

not contextual, so the cosine distance between two instance

of Apple is the same. The usage of the ELMo-BiLM API is

given at Alternatively, ELMo can be used with the Zalandro

flair API, a very simple framework for state-of-the-art Natural

Language Processing The Zalandro flair API is an open-source

project that can be accessed at The full Elmo model with

seven convolution layers as developed by the inventor. The

full model has 92 million parameters. It is generally not

required, but for the specific purpose, one may be required to

retrain the model. ELMo can be trained on any dataset using

the source code given at ELMo-BiLM GitHub repository: To

train the ELMo model on your data from scratch, you require

three files:

A vocabulary file

A set of training files

A set of held-out files

The vocabulary file has tokens sorted in descending order of

the occurrence. This token file must start with three special

tokens, followed by other tokens present in the dataset:

by other tokens>

The training data must be split into two parts: one for

training and one for test/validation. The last thing to do is to

change the parameters in the /bin/train_elmo.py file. Here,

you can make certain changes like:

Change the convolution layer if you want the smaller network.

For example, if you want output size to be 128, keep only the

[[1, 32], [2, 32], [3, 64], [4, 128] filters in the /bin/train_elmo.py

file.

If you want to run the training on multiple GPUs, change the

n_gpus = 3 as desired.

Update the number of tokens n_train_tokens = to a total

number of tokens in your vocab files.

You can experiment with other parameters.

After getting these files, you can run the following commands

to start the training: python bin/train_elmo.py --train_prefix= to

trainingfolder> --vocab_fileto vocab file> --save_dirwhere

modelswill be checkpointed>

For deep contextualized word representations, you can refer to

Training Supervised Embedding

We have been many embedding techniques, and the

unsupervised way of training embeddings seems to be a

normal way of training them on a domain-specific corpus.

Then, such learning is passed down to the supervised

learning task by providing a dense representation of the word

or sentences. As opposed to the previously learned

techniques, InferSent is a supervised learning method to learn

sentence level embedding. Facebook invented InferSentai with

a research team and published it in “Supervised Learning of

Universal Sentence Representations from Natural Language

Inference Data.”_ Conneau et al._ noted that image net

trained in a supervised way perform well in the downward

tasks. Extending this fact, Conneau et al. trained sentence

embedding layer in the supervised manner known as

Infersent.

InferSent uses Stanford Natural Language Inference data to

train the model for Natural Language Inference. NLI task

provides two sentences, and the task is to find a relation

between two sentences. Sentence 1 can be considered as a

premise, and sentence two is considered a hypothesis. The

relation can be entailment, contradiction, and neutral. For

example, if we have the following two sentences, the relation

between them is a contradiction:

A man inspects the uniform of a figure in some East Asian

country

The man is sleeping

The intuition is that NLI is a suitable task to learn the

semantic relationships between sentences, and by completing

this task, a model can also learn the intricacies of the

language. There are three parts in the neural network

architecture:

Shared encoder that encodes sentence into a fixed-size vector

Three operations are applied to the output of the encoder

model:

Concatenation (u, v)

Element-wise product u * v

Absolute element-wise difference |u – v |

Take the previous representation and apply fully connected

layers to predict one of the 3 classes.

The generalized architecture is as shown:

Figure 6.20: General architecture used to train the infersent

model.

The sentence encoder model can be one of the many listed

here:

Standard LSTM

Standard GRU

Concatenation of the last hidden states of forwarding and

backward GRU

Bi-directional LSTM with mean polling

Bi-directional LSTM with max polling

Self-attentive network (attention with BiLSTM)

Hierarchical convolution networks

Standard LSTM, standard GRU, and concatenation of last

hidden states of forward and backward These approaches take

the input of the sentence word by word. The last hidden

state of the LSTM or GRU is used as the fixed-size

representation for the sentence. In bidirectional GRU, the last

hidden layer of the forward and backward GRU is

concatenated to form the final sentence representation U and

V for each sentence, respectively.

Bi-LSTM with mean/max For the sequence of words, LSTM in

the forward and backward direction produces the output

vector for each time step. These output for each timestamp

are passed to the 1D pooling layer to take the mean or max

pooling. These values are then flattened to form U and V

vectors. The schematic representation of the entire network is

as follows:

Figure 6.21: Illustrating how BiLSTM with mean/max pooling can

be used to embed a sentence.

Self-attentive In this model, an attention mechanism is

applied in addition to the normal forward-backward RNN

model. The attention mechanism is similar to the one we

discussed in Chapter 4, Using RNN for while making a

language translation module. The following is a schematic

representation for the attention mechanism:

Figure 6.22: Attention network for sentence representation.

Hierarchical The hierarchical convolution network comprises

four convolution layers. At each layer, max-pooling of the

feature maps is done to obtain an intermediate

representation. The final sentence embedding is represented

by a concatenation of the four max-pooled representations at

each layer.

Figure 6.23: Hierarchical ConvNet Architecture.

The model was trained using SGD as the optimizer with 0.1

as the learning rate and 0.99 as momentum. At each epoch,

the learning rate is divided by five if the accuracy on the

validation set decreases. A batch size of 64 was used, and

learning was stopped when the learning rate went beyond 1e-

5. The fully connected layer had 512 perceptions with all the

models. The GloVe vector trained on the Common Crawl

840B with 300-dimensional embeddings was used to convert

words to dense vectors to give as input to various sentence

encoder models. Of all the models, the BiLSM model with

max-pooling achieved the highest accuracy.

Playing with InferSent

InferSent provides semantic representations for English

sentences. It is trained on natural language inference data

and generalizes well to many different tasks. The Facebook

research team provides its implementation at The entire flow

from training to getting a vector for the sentence is given

here:

Cloning InferSent and adding it to the system path

Downloading the dataset required by InferSent

Downloading the GloVe and FastText vectors

Downloading InferSent pre-trained models

Code snippet for all the above illustrated steps is as given

below:

cloning the git repository

!git clone https://github.com/facebookresearch/InferSent.git

sys.path.append(“/content/InferSent/”)

#Downloading required dataset by InferSent

!bash InferSent/dataset/get_data.bash

cloaning the git repository

!git clone https://github.com/facebookresearch/InferSent.git

sys.path.append(“/content/InferSent/”)

#Downloading required dataset by InferSent

!bash InferSent/dataset/get_data.bash

Downloading GloVe and FastText vectors

!mkdirInferSent/dataset/GloVe

!curl -Lo InferSent/dataset/GloVe/glove.840B.300d.zip

http://nlp.stanford.edu/data/glove.840B.300d.zip

!unzip InferSent/dataset/GloVe/glove.840B.300d.zip -d

InferSent/dataset/GloVe/

!mkdirInferSent/dataset/fastText

!curl -Lo InferSent/dataset/fastText/crawl-300d-2M.vec.zip

https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-

2M-subword.zip

!unzip InferSent/dataset/fastText/crawl-300d-2M.vec.zip -d

InferSent/dataset/fastText/

Downloading InferSentpretrained models

!mkdir encoder

!curl -Lo encoder/infersent1.pickle

https://dl.fbaipublicfiles.com/infersent/infersent1.pkl

!curl -Lo encoder/infersent2.pickle

https://dl.fbaipublicfiles.com/infersent/infersent2.pkl

Fine-tuning:

Loading the pre-trained InferSent model

Providing FastText vectors to the model

Building the Vocab

Fine-tuning the model on a given small corpus

Code snippet for all the above illustrated steps is as given

below:

from models import InferSent

V = 2

Loading pretrinedInferSent model

MODEL_PATH = ‘encoder/infersent2.pickle’

params_model = {‘bsize’: 64, ‘word_emb_dim’: 300,

‘enc_lstm_dim’: 2048,’pool_type’: ‘max’, ‘dpout_model’: 0.0,

‘version’: V}

infersent = InferSent(params_model)

infersent.load_state_dict(torch.load(MODEL_PATH))

Providing FastText vectors to the model

W2V_PATH = ‘InferSent/dataset/fastText/crawl-300d-2M-

subword.vec’

infersent.set_w2v_path(W2V_PATH)

Building the Vocab

infersent.build_vocab_k_words(K=100000)

Fine tuning the model on given small corpus

sentences =

open(“Ch6/dtaset/dataset_for_infersent.txt”).read().splitlines()

[:10000]

embeddings = infersent.encode(sentences, bsize=64,

tokenize=False, verbose=True)

print(‘nb sentences encoded : {0}’.format(len(embeddings)))

Inference : Calculating cosine similarity between two

sentences.

def cosine(u, v):

return np.dot(u, v) / (np.linalg.norm(u) * np.linalg.norm(v))

cosine(infersent.encode([‘the cat eats.’])[0],

infersent.encode([‘the cat drinks.’])[0])

>>> 0.99025655

InferSent also provides the importance of each token in the

sentence, as shown here:

Figure 6.24: Word importance by plotting vector generated by

InferSent.

Here, the importance of padding is shown higher because we

have not completed training a sufficiently large corpus. Once

you fine-tune this model on large data, the importance of

padding and stop word will go down, and the importance of

the other words will increase. The entire code to reproduce

the preceding example is given at

Supervised learning of universal sentence representations from

natural language inference data can be found at

Understanding and Using BERT

BERT is short for Bidirectional Encoder Representations from

Transformers and is a recently discovered technique for

embedding generation by Google researchers. BERT is the

state-of-the-art model that provides great results on a wide

variety of NLP tasks. It is the key technical innovation

applying bi-direction training of the transformer to the

language modeling. As we saw in the previous recipe, the

ELMo model with the bidirectional model shows better

accuracy on language modeling tasks. Extending the concept

of ELMo, BERT also uses the bi-direction trained model. In

the BERT paper, the researcher used a novel technique,

Masked LM (MLM), which allows bidirectional training of the

model that was previously impossible.

We have explored the transformer model in detail. The

transformer used encoder-decoder architecture with self-

attention to produce a prediction for the task. Since BERT’s

goal is to generate the language model, only the encoder is

required. Various models, including BERT, open AI GPT, and

ELMo, follow the same logic while training a language model.

The task often is to predict the missing word given the

context. For example, if the given sentence is “The _____ sat

on the mat,” the model needs to fill in the blank by

predicting the most probable word. ELMo, BERT, and OpenAI

GPT are similar and have little difference in their architecture,

as shown here:

Figure 6.25: A comparison of architecture between A) BERT, B)

ULM-Fit (a model recently proposed by open AI), and C) ELMo-

BiLm.

If all the architecture is similar, why is BERT the most

effective? The answer to this question is hidden in the

architecture. BERT used word pieces instead of words (e.g.,

playing -> play + ##ing), and this helps reduce the vocab

size.

BERT uses the transformer model as the core component, as

we saw in the first recipe of this chapter that the transformer

is made by stacking encoder and decoders. Each encoder

houses a self-attention and feedforward network. BERT takes

input as a combination of positional embedding + sentence

embedded and the token embeddings.

To deal with two sentence-related problems like sentence

classification, BERT used [sep] as a token to separate two

sentences and used sentence embedding. Sentence

embeddings are constant for one sentence but different across

two. It helps the model know where one sentence ends and

the second starts to treat them differently.

To use the model for classification, the author used [CLS]

token.

Figure 6.26: Token, sentence, and positional embeddings being

used in the BERT model.

Source: https://arxiv.Org/abs/1705.02364

The model was trained for two models simultaneously: the

masked language model and the next sentence prediction

model.

Masked language As is evident from the name, some random

words in the sentences are masked, and the model is asked

to predict them. It is a major task in this model. In Masked

language model paper, they reported randomly masking 10-

15% of the input words. The main issue with these

techniques is that the model only gets trained for masked

tokens. When there is no masked token model, it just avoids

the input and provides a random word as the output. This

way, the model gets trained for only 10-15% of the input. For

better learning, the author replaces a correct word with the

dummy words in the rest of the sentences. Inserting random

words in the sentences is the strongest form of noise, and

the model is compelled to predict masked words after

handling the noisy word. This makes the model more robust.

Next sentence prediction In addition to MLM, BERT is trained

on the next sentence prediction task by taking question

answering or natural language inference tasks. These tasks

require knowledge of sense structure. As shown above, the

model uses the [sep] token to separate two sentences. In

50% of the cases, the first and second sentences change their

order, and in the remaining 50% of the cases, time random

sentences are swapped. The model is supposed to predict

whether the second sentence is random. Here’s an example

for the two sentences:

Input = [CLS] the man went to [MASK] store [SEP] he

brought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man went to [MASK] store [SEP] penguin

[MASK] are fight ##less birds [SEP]

Label = NotNext

Fine-tuning: A sentence beginning with [CLS] token is given as

input for classification. The BERT encoder produces a

sequence of the hidden state. The task is to convert these

output into a single vector, and there are multiple ways to to

do this, like applying max pooling and using the attention

layer. The author, however, uses a simple approach to take

only the first hidden state output. All the input given to the

encoder layer interact with each other in the self-attention

module, so it is estimated that the first hidden state can be

compelled to provide crux of the learning. BERT has two

model architectures: one is with a small model and has 12

encoders stacked on one another, and the bigger one has 24

encoders stacked on one another. BERT also has larger

feedforward-networks comprising 768 and 1024 hidden units,

respectively, and more attention heads 12 and 16, respectively.

Training BERT on having 12-layer to 24-layer Transformer on a

large corpus (Wikipedia + BookCorpus) with 1M update steps

takes four days on 4-16 Cloud TPUs, and it is fairly

expensive. Fine-tuning such a model takes an hour on a

single Cloud TPU or a few hours on a GPU. Fine-tuning is

fairly inexpensive, but it is required when you are working in

specific areas like investment banking and health analytics. So

for our purpose, we can use the pre-trained model provided

by Google. This model can be used in two ways:

Flair - by Zalando research

BERT - Server client system

Using flair Flair is the open-source project by Zalando

research, and it has various embeddings, including BERT and

ELMo, provided in the easy-to-use APIs. BERT can be used as

follows:

fromflair.embeddings import BertEmbeddings

from flair.data import Sentence

init embedding

embedding = BertEmbeddings()

create a sentence object

sentence = Sentence(‘The grass is green .’)

get embeddings

for token in sentence:

print(token)

print(token.embedding)

>>> Token: 1 The

>>> tensor([-0.0323, -0.3904, -1.1946, …, 0.1305, -0.1365,

-0.4323])

>>> Token: 2 grass

>>> tensor([-0.3973, 0.2652, -0.1337, …, 0.3715, 0.1097, -1.1625])

vector for each word will be of size :

BERT server client This makes more sense as BERT is a

bulkier model it’s good to run it on the powerful model and

serve it to client APIs from there. BERT-as-service A module

on GitHub has excellent server-client support for BERT. BERT

with BERT-as-service can be used as:

!pip install bert-serving-server # server

!pip install bert-serving-client # client, independent of ‘bert-

serving-server’

Downloading and loading models

!wget

https://storage.googleapis.com/bert_models/2018_10_18/uncased

_L-12_H-768_A-12.zip

!unzip uncased_L-12_H-768_A-12.zip

!bash bert-serving-start -model_dir uncased_L-12_H-768_A-12/ -

num_worker=2

Encodind Sentences

from bert_serving.client import BertClient

bc = BertClient()

bc.encode([‘First do it’, ‘then do it right’, ‘then do it better’])

Executable code for the discussed utilities is provided in the

Jupyter Notebook given at

A newly released model by open AI—ULMFiT—was published

in the “Universal Language Model Fine-tuning for Text

Classification” paper. In state-of-the-art on six text classification

tasks, ULMFiT reduces the error by 18-24% on the majority of

datasets. ULMFiT is outside the scope of this book, but one

must try this model.

For more details, you can refer to the following links:

Universal language model fine-tuning for text classification:

https://arxiv.org/pdf/1801.06146.pdf

BERT: Pre-training of deep bidirectional transformers for

language understanding: https://arxiv.org/abs/1810.04805

Conclusion

This chapter covered all the required advanced models to

build a state-of-the-art NLP application. Transformers are a

basic building block of all models like BERT and Megatron.

We also saw that deeper CNN like fully-parallelizable networks

are the future of embeddings. Then, we looked at methods to

convert the entire sentence to the vector for easy application

of NLP on the entire sentence instead of processing it word

by word. Then, we learned how to combine CNN and RNN

into one network to get contextual embeddings using ELMo.

Finally, we explored how to easily use the most-talked about

model in the NLP world—BERT. It is the thriving area of

research in the domain of NLP, and all major companies are

working to produce models to break the current state-of-the-

art.

The next chapter will help you learn how to apply deep

learning to NLP tasks.

CHAPTER 7

Applying Deep Learning to NLP Tasks

This chapter will cover the practical aspect of NLP by

applying NLP to various real-life use cases. This chapter helps

apply the concept of CNN, LSTM, and transformer studied in

the previous chapter. Topics like topic modeling, text

generation, text summarization engine, language translation

using a transformer, sentiment analysis, and named entity

recognition will be covered in-depth in this chapter. This

chapter is equipped with the minimum code required to

produce reproducible results along with an in-depth intuitive

explanation.

Structure

In this chapter, we will cover the following topics:

Topic modeling

Text generation

Building text summarization engine

Building language translation using a transformer

Advancing sentiment analysis

Building named entity recognition

Objective

Reviewing sentiment analysis

Understanding topic modeling and using various techniques

such as LDA, doc2vec

Understanding text generation

Understanding and building a NER model

Building text summarization engine

Building language translation model

Technical Requirements

The code for this chapter is present in the Ch7 folder at

GitHub repository This chapter requires the following packages

to execute code:

Tqdm

Networkx

Matplotlib

Pandas

Numpy

Torch

Spacy

Nltk

Chakin

Gensim

PyLDAvis

Scikit_learn

TensorboardX

Torchtext

You can install these requirements by installing all the

packages listed in requirements.txt by simply issuing pip

install -r This chapter uses IPython Notebook/ Jupyter

Notebook for easy execution and connecting thoughts with

implementation.

Topic Modeling

Topic modeling is the method of finding topics from the

collection of the document. There are many methods to

discover topics from the set of documents, including latent

dirichlet allocation, latent semantic analysis, probabilistic latent

semantic analysis, and a deep learning-based lda2vector.

Latent Dirichlet Allocation or LDA is the most-used method

for topic modeling. Some applications of topic modeling are

as listed:

To suggest books based on topics/ keywords found in

previously purchased books.

To cluster articles based on common topics.

To identify important events in the year by analyzing news

dumps; such events can be financial events, and mapping

such events to the stock market may provide an additional

variable that can help predict future movements better.

To cluster similar images together, creating images similar to

the documents.

LDA is the most widely used method and also provides an

idea about other methods used in topic modeling. Let’s say

you have 1000 documents, from which you have chosen a list

of 1000 commonly occurring words. Let’s say each document

has 250 of these commonly occurring words. Commonly

occurring words found in documents usually suggests that

two documents are discussing the same topic. If you connect

each topic to each document, that is about 250 * 1000 =

250,000 associations. These many associations are not

acceptable, as one word cannot be related to each document

with equal weight. The following is the diagram of the all-

topics–to-all-documents connection:

Figure 7.1: The possible connection of words to the document.

Solid connections show high connectivity, while dotted

connections show less connectivity and weaker connections.

Let’s decrease this connection to get fewer important

connections. Let’s assume that all documents talk about the

same thing but don’t use the same words. It is something

latent and does not have an absolute word, but it is more

like having the same topic. This is done by introducing a

latent layer similar to the hidden layer in the neural network.

This latent dimension is shown in the following diagram:

Figure 7.2: Latent dimension

Bringing topic as the latent dimension, where the topic serves

as the hidden dimension between word and document.

This latent—learning—is the same for all documents. Let’s

take five latent topics that are connected to all documents

and all topics are connected to words. This makes 1000*5

documents to topic connections and 5*100 of the topic to

word connections. The total is 10,000 connections. We have

reduced the number of connections by 25 fold. This is the

core concept of LDA. The latent space finally represents

topics. Moving ahead, let’s see how these topics are learned.

Before diving into the details, let’s fix our notation:

The number of topics a document belongs to (a fixed

number); each topic can be given by where k ⊂ This is
predefined by the user.

The vocabulary, each word, can be given by where v ⊂

The number of documents; each document can be given by

where m ⊂

Numbers in each document.

A word document is represented as a one-hot encoded vector

of size V.

(capital w): Represents a document (that is a vector of “w”

s) of N words.

Corpus, a collection of M documents.

z: A topic set of k topics; a topic is a distribution word. For

example, it might be planet = (0.7 earth, 0.1 pluto, others).

The following diagram is just for easier understanding and

does not represent the actual working of the LSA:

Figure 7.3: All the matrices involved in the LDA optimization.

As shown in the preceding diagram, there are certain

constants including:

α: Distribution of topics is for all the documents in the

corpus looks like, α govern the distribution

θ: A matrix where represents the probability of the document

containing the topic.

η: Distribution of words in each topic. η govern this
distribution

β: A Matrix where represents the probability of topic

containing the word.

Mathematically, what the overall process is about can be

represented as follows:

: : : : :

I have a set of M documents, with each document having N

words and each word generated by a single topic from a set

of K topics. I’m looking for the joint posterior probability of:

θ: A distribution of topics, one for each document.

z: N topics for each document.

β: A distribution of words, one for each topic.

Given,

D: All the data we have (this is, the corpus)

α: A parameter vector for each document (document - topic

distribution)

η: A parameter vector for each topic (topic and word

distribution)

The only challenging thing remaining is to calculate the

posterior probability, and it cannot be easily solved. This

problem belongs to the class of optimization-related problems.

It requires loss calculation, correcting all the learnable

parameters and matrices, and repeatedly relating this until it

converges. lda2vec is another related algorithm used for topic

modeling. Christopher E Moody proposed this technique in

his publication Dirichlet Topic Models and Word Embeddings to

Make lda2vec is an extension of Word2Vec and LDA to learn

word topic and document vectors jointly. It particularly utilizes

the skip-gram model, which is also used for training

word2vec:

Figure 7.4: An illustration showing how lda2vec is trained.

Topic modeling can be done using the following pre-built

libraries like Gensim. In the present implementation for

demonstration purposes, we will use 20-newsgroup data, a

collection of 20,000 newsgroup documents. 20-newsgroup

data has been extensively used in the experimental

demonstration related to text classification and text clustering.

The dataset has related groups (for example,

comp.sys.ibm.pc.hardware / as well as distant classes (such

as misc.forsale /

Well, the classes’ relation is of lesser concern to us, as we

are not using the dataset for text classification. Still, we will

use this dataset for extracting topics from the description.

Applying LDA

Data preparation: Data preparation includes reading data from

the JSON file at After reading the content into a data frame,

the content looks as follows:

follows:

follows:

follows:

follows:

follows:

follows:

Table 7.1

Then, some pre-processing is done, including tokenization of

content and removal of email, new line, and quotes.

LDA: Once all the sentences are tokenized into words, they

are converted to bi-gram and trigram using This can be done

as shown:

Build the bigram and trigram models

bigram = gensim.models.Phrases(data_words, min_count=5,

threshold=100) # higher threshold fewer phrases.

trigram = gensim.models.Phrases(bigram[data_words],

threshold=100)

Faster way to get a sentence clubbed as a trigram/bigram

bigram_mod = gensim.models.phrases.Phraser(bigram)

trigram_mod = gensim.models.phrases.Phraser(trigram)

After these words are referenced with IDs because the

Gensim LDA model takes IDs of the word as input, Gensim

LDA can be applied as shown:

lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,

id2word=id2word, num_topics=20, random_state=100,

update_every=1, chunksize=100, passes=10, alpha=’auto’,

per_word_topics=True)

In the output, you will see that the output for each topic is

described by a set of the keywords given, along with

keywords describing the topics. For example, topics are

represented as 0.099”car” + 0.036”model” + 0.031”option” +

0.027”oil” + 0.027”mike” + ‘ + ‘0.026”engine” +

0.024”michael” + 0.021”water” + 0.020”door” +

0.018”internal”’. This means the top 10 keywords that

contribute to this topic are car, oil, engine, and so on, and

the weight of car on the topic 0 is 0.099.

Visualizing output: A pyLDAvis library can be used for

visualization and inference of it is available at

https://github.com/bmabey/pyLDAvis and can be installed simply

with pip install The visualization function requires trained

tokenized and preprocessed corpus, and index to tokens:

Visualize the topics

pyLDAvis.enable_notebook()

vis = pyLDAvis.gensim.prepare(lda_model, corpus, id2word)

The interactive visualization looks as follows:

Figure 7.5: Interactive visualization

Each bubble on the left-hand side plot represents a topic. The

larger the bubble, the more prevalent the topic is. A good

topic model will have fairly big, non-overlapping bubbles

scattered throughout the chart instead of being clustered in

one quadrant. A model with too many topics will typically

have many overlaps, and small-sized bubbles will be clustered

in one region of the chart. If you move the cursor over one

of the bubbles, the words and bars on the right-hand side

will be updated. These words are the salient keywords that

form the selected topic.

Evaluating the model: Model perplexity and topic coherence

provide convenient measures to judge how good a given topic

model is. The topic coherence score has been more helpful.

A reference about topic coherence and perplexity is given in

the next subsection. Both measures are calculated as given

here. The lower the perplexity, the better the topic model.

Compute Perplexity

Perplexity = lda_model.log_perplexity(corpus)

print(‘Perplexity: ‘,Perplexity)

Compute Coherence Score

coherence_model_lda = CoherenceModel(model=lda_model,

texts=data_lemmatized, dictionary=id2word, coherence=’c_v’)

coherence_lda = coherence_model_lda.get_coherence()

print(‘Coherence Score: ‘, coherence_lda)

The preceding implementation of the LDA is provided at

An improved LDA algorithm, Mallet’s version of LDA, gives

better results. LDA mallet is available with Gensim, and it is

implemented in the class within Gensim.

You can refer to the following links for more details:

Latent Dirichlet www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

Evaluation of topic Topic Coherence:

https://datascienceplus.com/evaluation-of-topic-modeling-topic-

coherence/

Text generation

LSTM or any RNN network is generally treated as a predictive

model and used for classification. RNN models can also be

used as generative models to generate a related new

sequence by learning the text. Generative models help study

how well the model has learned our data, and they can help

augment the data. Generative Adversarial Network-based

methods are widely used for data augmentation. In this

recipe, we will learn how to develop a generative model using

LSTM on different textual data.

Here, we are using RNN as the generative model. Generative

models with RNN are similar to the normal classification

module, except that the number of classes in generative

models is very large. Before going further, we will see how

data for such a model is prepared. Here’s a crisp explanation

of how to prepare data:

Figure 7.6: An illustration showing how text generation works.

The input is indicated in green for each iteration, and the

next character (red) serves as the target. This input window

then slides, and the next character after windows will be

selected as the target. This continues for the entire dataset.

In training, the target and predicted characters are then used

for the loss calculation. In prediction, the predicted character

is appended to the sequence; the very first character is

removed from the sequence to make the input size equal,

and these steps are repeated for several characters to be

generated.

The preceding data preparation considers the character model,

and it is similarly applicable to the word-based model. Here,

we have taken the character length as 200, so 200 characters

will act as the feature, and the next character will be treated

as the target. Once this data is prepared, it is inserted into

any of the RNN units, such as GRU or LSTM. Once the data

is prepared, the next step is to feed it to the RNN unit. The

data feeding is done as shown in the following diagram. A

total of 200 characters are given to the GRU at once, and

this is equal to 200 time steps. After the model is prepared

by training it as described earlier, the next generation from

such a model follows. In the generation, the following steps

are performed to get the next character in the sequence:

Start with the random starting point and take 200 characters

from the training/test text.

Provide these characters to the GRU so that the probability

distribution for the next character can be generated.

Pick up the next character by sampling.

Add this character to the initial sequence; now we have 201

characters. Take the last 200 characters and repeat steps 2, 3,

and 4.

In step 3, as I said that we sample the character from the

probability distribution, and we are not taking the character

with the highest softmax probability. This sampling technique

will insert some uncertainty and let the solution pick a word

with less good predictions sometimes. This sampling

technique will help minimize repetition. In an implementation,

we will see how a non-uniform random sample is drawn

based on the prediction probability.

Understanding the Network

In the present implementation, I am using a book from

Gutenberg repository –“Gypsy Sorcery and Fortune Telling by

Charles Godfrey Leland”. You can take any text in replacement

for this book. The pre-processing part, along with the entire

implementation, is covered in the

CH7/character_based_generation.ipynb script. The first part to

be discussed here is the network architecture:

class CharRNN(nn.Module):

def __init__(self, tokens, n_steps=100, n_hidden=256,

n_layers=2,

drop_prob=0.5):

super().__init__()

self.drop_prob = drop_prob

self.n_layers = n_layers

self.n_hidden = n_hidden

self.chars = tokens

self.dropout = nn.Dropout(drop_prob)

self.lstm = nn.LSTM(len(self.chars), n_hidden, n_layers,

dropout=drop_prob, batch_first=True)

self.fc = nn.Linear(n_hidden, len(self.chars))

self.init_weights()

def forward(self, x, hc):

‘’’ Forward pass through the network ‘’’

x, (h, c) = self.lstm(x, hc)

x = self.dropout(x)

Stack up LSTM outputs

x = x.view(x.size()[0]*x.size()[1], self.n_hidden)

x = self.fc(x)

return x, (h, c)

The network architecture is very simple; it takes the character

encoder to numerical indices as the input. This input is

passed to the LSTM cell, which then gives our output shape,

hidden, and the cell state. A dropout is applied to the LSTM

output, and all the output for each time-step are stacked over

one another. Let’s take one example, assuming the following

variables:

batch size 32

hidden size =256

Sequence length = 100

Considering the preceding input from the above-defined

variable, the output from the LSTM will be of size [1, batch

size, hidden size] for each time step. This output will be

generated for time steps equal to sequence length (100).

These 100 outputs are stacked to form the resultant shape

[100*batch size, hidden shape]. This shape is then passed on

to the fully connected layer, which will transform [100*batch

size, hidden shape] in to [100*batch size, number character].

To simplify understanding, let’s take the final shape as [32,

100, number of unique characters]. After applying softmax to

this shape, it represents the probability of a character out of

several unique characters for 100 characters taken as input in

a batch of 32. Having understood this, we will move on to

the prediction part. The implementation of the prediction

function looks like this:

def predict(net, char, h=None, top_k=None):

if h is None:

h = net.init_hidden(1)

character to index

x = np.array([[net.char2int[char]]])

x = one_hot_encode(x, len(net.chars))

inputs = Variable(torch.from_numpy(x), volatile=True)

inputs = inputs.to(device)

h = tuple([Variable(each.data, volatile=True) for each in h])

forward propagation

out, h = net.forward(inputs, h)

p = predicted

p = F.softmax(out).data

p = p.to(device)

if top_k is None:

top_ch = np.arange(len(net.chars))

else:

p, top_ch = p.topk(top_k)

top_ch = top_ch.cpu().numpy().squeeze()

p = p.cpu().numpy().squeeze()

char = np.random.choice(top_ch, p=p/p.sum()) #random

choice on the basis of weighted distribution

return net.int2char[char], h

This function takes previously trained network as the input,

along with other parameters such as char and hidden state.

The argument char is a seed—a short sequence required to

initiate the generation; it can be something like “the,” “we,”

or any other short sequence. After receiving these arguments,

the predict function performs the following steps:

Convert character to numerical index by dictionary lookup.

Create new variables for the hidden state; otherwise, it would

backdrop through the entire training history.

Parse numerical indexes to the network and get back

probability distribution for the new character, as discussed

previously in the network architecture.

Choose the top five largest characters, out of which one will

be chosen as the final candidate.

Apply random choice based on weighted distribution using

Numpy random with the non-uniform distribution. Our

predictions come from a certain probability distribution over

all the possible characters. We can make the sampled text

more reasonable but less variable by only considering some

most probable characters. It will prevent the network from

giving us completely absurd characters while allowing it to

introduce some noise and randomness into the sampled text.

Repeat 1-5 until all max specified length return all the

generated characters.

When I allow training the network for 25 epoch, the final

generated text looks as given here:

“there when a seal of the places a stall as to the Strunk of

all seence, into a command trace the whole the particle that

or taken to treat to the work and reperiously trancelly would

hus believed to the cu”

It seems like the network has learned to place articles like

the and but it is making spelling mistakes. Allowing the

network to train for longer could yield better results. With a

small amount of text, the chance of detecting novelty in the

generated text is highly rare. The decrease in training, as well

as validation loss, is as given:

Figure 7.7: Decrease in training and validation loss while training

character-based text generation model.

There are many wonderful texts available online and not

protected under copyright law. One of them is Project

Gutenberg. You can easily download any of the books from

there and experiment. You can increase the data and see its

effect, and you can determine whether it can understand

deeper aspects of the text. The text generated by RNN

generally seems to be right and has proper grammar. New

sentences are hard to find in the generated sentences. The

previously discussed method can also generate code if a

sufficiently large amount of code is given for training. Try it

yourself to see whether the generated text has proper

indentation, opening and closing of the bracket, and whether

proper variable assignment is generated.

Take a look at the following references for more information:

Toward the controlled generation of text:

https://arxiv.org/abs/1703.00955

Kaggle topic modeling on tweets:

https://www.kaggle.com/errearanhas/topic-modelling-lda-on-elon-

tweets

Building Text Summarization Engine

Text summarization is a method to convert a large document

into smaller documents while keeping the meaning intact.

There are two types of summarization techniques:

Extractive Summarization wherein the most important

sentence from the given text is selected so that the extracted

sentence represents the same meaning.

Abstractive Abstractive summarization is a generative

technique wherein the algorithm first goes through the entire

document and then summarizes the text. Here, the algorithm

rewrites the entire summary instead of just copying sentences.

Abstractive summarization can be done with application

algorithms such as LSTM, CNN + LSTM, and other generative

models.

Based on the number of documents involved, document

classification can be divided into two types:

Single document It involves summarization from a single

document, and extractive summarization generally performs

better here.

Multi-document It involves preparing a summary from multiple

documents. The main problems in summarizing multiple

documents are:

Repetition in the summarized text.

Losing local, paragraph-level context.

Needs lots of data for training summarization.

The algorithm needs to remember lots of data, do it requires

a bulkier model.

In this recipe, we will understand how extractive

summarization works within detailed algorithm implementation.

One of the popular algorithms for text summarization is text

rank. Text is an extractive and unsupervised technique for text

summarization. The page rank algorithm inspires text to rank.

Page rank is popularly used in search engine development like

Google. Let’s see how page rank works. For example, we have

five pages with some hyperlinks between them. A hyperlink is

a way of navigating between two pages. A page’s connectivity

is defined as per the number of hyperlinks present between

them. For example, let’s say we have the following hyperlinks

in five pages. The rank of these pages can be defined based

on the several links present between them using the Pagerank

algorithm. The connectivity between five pages can be

represented with probabilities, and this probability can be

easily represented with a matrix of 5*5, as shown with all the

probabilities. The page with no connectivity is called a

dangling page, and here, --- is the dangling page. The entire

process of text rank can be summarized in the following

steps. This step is very similar to the page rank algorithm.

Instead of web pages, we use text in text rank.

The hyperlink between two pages as the connectivity measure

is replaced by the sentence similarity in the text rank

algorithm.

The matrix is constructed with a similarity between all the

sentences.

Figure 7.8: Essential steps in the extractive summarization

technique using T.

In single document summarization, the document is

tokenized.

In multiple documents, the first step is to concatenate all the

documents, and then we tokenize the text.

Apply distance measure on the sentence after applying

embeddings to the tokens. Using this, a similarity matrix is

calculated.

A weighted graph is constructed.

Page rank is applied to the constructed graph to form the

sentence ranking.

Based on the sentence ranking, the summary is constructed.

Abstractive Text Summarization

The example data is provided at Ch7/data/

Preprocessing and Tokenization is carried out using the NLTK

tokenizer. To vectorize the word, we will use Glove

Embedding. This includes removing all the non-alphanumeric

character and stop words.

Vector representation of All the words in the sentence are

vectorized and the mean of all the words is taken to have a

vector that represents an entire sentence. It can be done very

easily, as shown:

sentence_vectors = []

for each_sent in clean_sentences:

if len(each_sent) != 0:

v = sum([word_embeddings.get(word, np.zeros((100,))) for

word in each_sent.split()])/(len(each_sent.split())+0.001)

else:

v = np.zeros((100,))

sentence_vectors.append(v)

A variable sentence_vectors will be holding the vector for

sentence representation of each vector.

Similarity matrix A cosine similarity will be calculated between

all the sentences. For example, if we have 100 sentences, the

cosine similarity matrix will be of size (100, 100). It can be

simply done as follows:

for i in range(len(sentences)):

for j in range(len(sentences)):

if i != j:

sim_mat[i][j] = sentence_vectors[j].reshape(1,100))[0,0]

The result is stored in the pre-initialized matrix sim_mat with

all zeros.

Applying the PageRank Page rank is applied with the

NetworkX package. NetworkX is the collection of algorithms

related to the graph and tree data structure. To apply page

rank, sim_mat is treated as a weighted graph, and page rank

is applied as shown:

nx_graph = nx.from_numpy_array(sim_mat)

scores = nx.pagerank(nx_graph)

Summary The score is generated for each sentence, and

sentences are ranked according to their scores. The sentence

with the highest ranks is given as a summary. The code

required to reproduce the extractive summarization process is

provided as an IPython notebook at

We saw how to use extractive summarization, but it is a very

simple technique with many drawbacks. Some of these

drawbacks are listed here:

It gives repetitive output.

The output sentence doesn’t tell a continuous story; sentences

are not related many a time.

It does not produce human-like summarization.

Due to this reason, another technique called summarization

gained popularity. Abstractive summarization produces the

summary by rewriting the content after going through the

reference text. It uses the concept of RNN based encoder-

decoder and recently coined pointer networks.

Building Language Translation Using a Transformer

The transformer is used in industrial-grade language

translation systems like openNMT. Due to its capability to use

GPU efficiently, it has replaced the previously known state-of-

the-art RNN-based attention network architectures. In Chapter

4, Using RNN for we saw how to design a language model

for translation using the attention mechanism. In Chapter we

saw how the mighty transformer works by connecting all the

dots. In this recipe, we will understand how to use a

transformer for the language translation task. This recipe is

focused on how to prepare data and how to provide input to

the transformer model.

Before moving ahead, we need to fix some notation. Let’s

assume that we are trying to train out transformer for

German to English translation:

Represents the source language (German)

The language to which the text is converted (English)

The following are the steps involved in preparing and

providing input to the transformer model for language

translation purposes. The first step is preprocessing, whereby

data is brought in to the shape so that the model can take it

easily as input. The entire process is shown in the following

diagram:

Figure 7.9: Steps involved in preprocessing

We start with four partitions of data namely: train source,

train target, test source, and test target. Train source and test

target have sentences in one language, and train target and

test target have corresponding sentences in another language.

Sentences are first converted to word tokens. Vocabulary is

generated using Train data, and it is applied to the train and

test data. All the input is converted into numbers, where each

unique number represents a word in the vocabulary. Such a

sentence is padded with the beginning of the sequence and

end of sequence tags. Then, all four parts are written to the

disk as preprocessed data:

Figure 7.10: Training a transformer on the preprocessed data.

The learning process require preprocessed data; two data

loaders, one each for train and test data. The batch is

designed, which provides an equal number of samples in a

batch padded according to the size of the longest sentence in

the batch. The data loader also provides the indices for

positional embedding. The transformer is trained on the input

train source, train target, train source positions, and train

target positions. If a sentence in the train source looks like

[2, 5, 446, 23, 26, 88, 1, 0, 0, 0, 0, 0, 0], the positional

input will be [1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0]. Positional

input is to represent the position of the token in the

positional embedding phase of the transformer.

This is another kind of measure generally used in language

models. It is a way to capture the degree of ‘uncertainty’ a

model has in predicting (assigning probabilities to) some text.

It is related to Shannon entropy, so the lower the perplexity,

the lower is the entropy and the better is the certainty of the

model. Mathematically, let’s say cross-entropy between target

distribution p and the predicted distribution q is given by =

then, the perplexity (PPL) can be given by cross-entropy over

any base b. PPL = This equation is often simplified by taking

exponential as the base PPL = In this recipe, will use

perplexity (PPL) as a measure to track model performance on

the train and test data.

Using a Transformer

Preparing data: Usually, this step includes reading the data

from the file and preprocessing it. The output of this step is

used in the next step as the transformer model’s input. I

have provided the entire code with the supporting functions

required to train the transformer and translate test sentences

at I am using a small amount of data to demonstrate how it

is prepared and provided as input to the transformer. In this

demonstration, I will translate German to English. The data

required for training is present in the

Ch7/language_translation/data folder. To help you understand

the logic, I will walk you through the code along with an

explanation. The following conventions are used to keep logic

aligned with code:

< File Name > : < Start Line > – < End line >

Here, Start Line and End Line are line numbers of the code

snippet being discussed here. From the given file name,

preprocess.py script requires four arguments: train source,

train target, validation source, and validation target. Run

preproceess.py as given:

python preprocess.py -train_src data/newstest2013.de -train_tgt

data/newstest2013.en -valid_src data/newstest2013.de -valid_tgt

data/newstest2013.en

I am taking the train and validation data as the same to

keep the process simple. Otherwise, train and validation

samples should always be different.

The preprocess.py - 84:85 --max_word_seq_len argument

defined the maximum length of the sentence. These lines

count the beginning and end of the sequence, and the token

is added to The default value of the max_word_seq_len was

50; now the maximum value is 52:

opt = parser.parse_args() # opt is instance of argument

parser opt.max_token_seq_len = opt.max_word_seq_len + 2 #

include the and

preprocess.py - The read_instances_from_file function is called

to take the train source file, along with max and keep the

case as the parameters.read_instances_from_file function

performs the following operation on the provided data:

Read the data sentence by sentence

If keep_case is false, convert all sentences to lower case

Tokenize the sentence into words

If the number of words is greater than chop the sentence

Wrap the words of the sentence with Beginning of the

sequence and End of the sequence token

Warn the user regarding the number of sentences trimmed; if

the number of sentences trimmed is higher in fraction, you

can increase the max_token_seq_len parameter and rerun it:

train_src_word_insts = read_instances_from_file(opt.train_src,

opt.max_word_seq_len, opt.keep_case)

The same read_instances_from_file function is called upon

train target, valid source, and valid target.

preprocess.py - 97:101 and One source sentence in one

language corresponds to one target sentence in another

language. Ideally, the number of sentences in the source must

be the same as the number of sentences in the target. If this

is not the case, there must be some problem with the

dataset. To check this, some line of code is kept. If the

source and target files have an odd number of lines,

minimum lines are counted from both subsets. The subset

that has more lines than the minimum is truncated to reach

the minimum. This check is done for both train and

validation data. This is not the correct strategy, as the line

might be missing from anywhere and will disturb the entire

alignment of the train or validation data:

if len(train_src_word_insts) != len(train_tgt_word_insts):

print(‘[Warning] The training instance count is not equal.’)

min_inst_count = min(len(train_src_word_insts))

len(train_tgt_word_insts))

train_src_word_insts = train_src_word_insts[:min_inst_count]

train_tgt_word_insts = train_tgt_word_insts[:min_inst_count]

After this function, the train_src_word_insts or

train_tgt_word_insts variable will look as shown below. All

sentences are passed with and .[[‘’, ‘nach’, ‘der’, ‘kanadischen’,

‘krebsgesellschaft’, ‘sind’, ‘die’, ‘studien’, ‘zu’, ‘vitamin’, ‘e’,

‘widersprüchlich.’, ‘’], [‘’, ‘während’, ‘eine’, ‘studie’, ‘die’,

‘verringerung’, ‘des’, ‘risikos’, ‘von’, ‘prostatakrebs’,

‘herausgefunden’, ‘hat, ‘, ‘zeigte’, ‘eine’, ‘andere’, ‘eher’, ‘eine’,

‘erhöhung.’, ‘’]]

preprocess.py - 105:106 and Removing both the sentences,

one from the source and one from target, if a sentence is

empty. This check is done for both source and validation:

train_src_word_insts, train_tgt_word_insts = list(zip(*[(s, t) for

s, t in zip(train_src_word_insts, train_tgt_word_insts) if s and

t]))

preprocess.py - This code snippet builds source and target

vocabulary. The build_vocab_idx function is called to take

previously tokenized sentences and which defines the

minimum frequency of the word to be kept in the vocabulary.

This function performs the following operations:

Counting all unique words from the given tokenized sentences

Building a dictionary having a word and its frequency in the

tokenized sentences

Ignoring all the words from the dictionary with frequency

lower than min_word_count

Returning all other words

This function is called on source and target sentences to

build separate vocabulary for both.

src_word2idx = build_vocab_idx(train_src_word_insts,

opt.min_word_count)

tgt_word2idx = build_vocab_idx(train_tgt_word_insts,

opt.min_word_count)

The build_vocab_idx function returns the source and target

word to index dictionary like: : tgt_word2idx or src_word2idx :

{‘’: 2, ‘’: 3, ‘’: 0,’’: 1, ‘dass’: 4, ‘haben’: 5, …}. It is called

upon tokenized sentences of source and target sentences. If

the user provides the share_vocab argument as True, the

function is called with both tokenized sentences of source

and target and the vocabulary is shared among both, as

shown at preprocess.py - 134: Alternatively, you can pass

previously constructed vocabulary to this script by specifying it

in the -vocab argument, and it will be loaded by the code

snippet preprocess.py - 126:132 by using and torch.load() is

similar to numpy save or load object, which is used to save

or load binary objects.

preprocess.py - The convert_instance_to_idx_seq function is

called, with train source, valid source and train target, valid

target along with source word2idx and target word2idx,

respectively. Remember, we are not building any vocabulary for

validation subset; the vocabulary built for train data is

provided to validation to convert words to indices. After these

lines are executed, the train and validation sets have all

sentences are numbered and look like this: .[[2, 13, 1, 1, 18,

30, 1, 12, 1, 1, 3], [2, 9, 1, 30, 1, 1, 1, 1, 36, 30, 1, 10, 1, 22,

1, 3].

preprocess.py - All the prepared subsets, along with the user

arguments provided while executing the script, are saved

using the torch.save() function. This is our preprocessed

dataset. The previously prepared preprocessed dataset will be

provided to train.py as an argument. Then, train.py will train

a transformer model on this data.

Training: A Ch7/language_translation/train.py script takes

previously prepared data as the argument, along with other

predefined arguments. The script can be executed as shown:

python train.py -data /path/to/preprocessed_data

train.py - Loading the preprocessed data in the data variable

and retrieving the max_token_seq_len parameter from

previously-stored argument objects.

train.py - The prepare_dataloaders function is called, and it

takes loaded “data,”user-defined arguments as the input. The

main purpose of this function is to construct a train and

validation data loader. This function performs the following

operations:

A function class takes and where src_word2idx and

tgt_word2idx are word to index dictionaries, src_insts and

tgt_insts are the sources and target tokenized and

numericallized sentences as loaded from the prepared data.

A TranslationDataset subclass designed by extending

torch.utils.data.Dataset reverses the word2idx dictionary to

idx2word and returns it along with the original arguments as

parameters to the TranslationDataset class. Here, we are using

TorchText as the data loader, and in torch text, all other

datasets should be subclasses of All subclasses should

override which provides the size of the dataset, and and

support integer indexing in the range of 0 to len(self)

exclusive.

This TranslationDataset class is embedded under This

DataLoader takes and the paired collate function in it has two

functions:

It calls collate_fn with src_insts or tgt_insts as the argument.

It considers the batch_size and pad all the sentences as per

the sentence with the max size.

The collate_fn function also constructs the array for positional

embedding.

It returns src_insts or tgt_insts and the positional embedding

array

I have provided an output of and the corresponding

positional embedding is in the code as the comment.

The num_workers parameter specifies the number of CPU

processes to be used for data preparation.

Similarly, training_data and validation_data are generated.

If you print the length of it will be 4. Each of these data

loaders has train source, train target, train source positions,

and train target positions. Train source and train source

positions will of the same shape [32, 52]. The first dimension

in shape represents the batch number, and the second

dimension represents the longest sentence size. Similar to the

target.training_data and validation_data are returned to the

main function.

train.py - The transformer model is instantiated with the

required parameters.

train.py - Defining an optimizer class with Adam as an

optimizer and different functions to update the learning rate,

zero the gradient, and update it is given in This optimizer is

the same as the one we used in an earlier chapter, but it is

defined differently.

train.py - Calling a train function with training, validation data,

transformer model object, optimizer, and arguments provided

while executing the script. Train function defined at. train.py -

It performs the following operations:

Defining log files to report/write epoch loss and accuracy.

At epoch, the following steps are performed:

Training the transformer model for an epoch and giving out

train loss and training accuracy.

Using the preceding trained model on the validation data and

giving out validation loss and validation accuracy.

Checkpoint the model as a model.ckpt file.

We ran the code on 100 German to English translation

dataset. It is a very small dataset, but the model was able to

increase accuracy from 0 to 55. It is still nowhere near the

so-called good, but the model is converging, and that’s a

good sign.

Figure 7.11: The PPL and accuracy curve v/s epoch.

PPL is the standard metric used in NLP for language

modeling. The train and validation matrices look the same as

the train data was used for validation purposes. The model

was trained with these parameters:

(batch_size=64, cuda=True, d_inner_hid=2048, d_k=64,

d_model=512, d_v=64, d_word_vec=512,

data=’preprocess/preprocessed.data’, dropout=0.1,

embs_share_weight=False, epoch=10, label_smoothing=True,

log=None, max_token_seq_len=52, n_head=8, n_layers=6,

n_warmup_steps=4000, no_cuda=False, proj_share_weight=True,

save_mode=’best’, save_model=’trained’, src_vocab_size=41,

tgt_vocab_size=44)

The model built after training can be used to translate any

German text to English:

python translate.py -model trained.chkpt -vocab

data//home/sunil.patel/Desktop/transformer-

master/preprocess/preprocessed.data -src data/newstest2013.de

-no_cuda

I have provided another translation related dataset at This

dataset has train, validation, and test partitions. Run the

preceding implementation on this corpus and tweak the

model parameters to achieve higher test accuracy. There are

many implementations available for transformers, and one of

them is PyTorch implementation of OpenAI’s finetuned

transformer. The pre-trained weight for this transformer

modular is already provided, which means you can achieve

better performance with little data to fine-tune. Do experiment

with this model. Compare the accuracy of other models

trained from scratch and the model with trained weight.

The following resource provides function by function in a

detailed explanation of how the transformer was developed:

The Annotated Transformer:

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Advancing Sentiment Analysis

We saw various recipes in the earlier chapters where

sentiment analysis was applied to various datasets. In Chapter

4, Using RNN for we saw how attention can use information

from each timestamp and combine it with the final hidden

state to get state-of-the-art results. This recipe is about using

the attention mechanism for the text classification problem. In

this chapter, we will construct a network with and without

attention mechanism, and we will compare both to see which

one performs better.

The recurrent network with attention can be diagrammatically

represented as follows:

Figure 7.12: Attention-based bidirectional RNN structure.

As shown in the figure, the network is fed with a word at a

different time step. The Recursive Neural Network has both

forward and reverse directions, and RNN can be any unit like

vanilla RNN, GRU, or LSTM. Hidden states are shown by …,

The direction of the arrow over a hidden state shows its

direction. shows a hidden state moving forward along the

sequence, and shows a hidden state moving backward with

respect to the sequence. A hidden state for any token, is a

concatenation of forward and backward state =

In the RNN without the attention mechanism, the and vectors

are concatenated to form the final representation. has the

crux of the entire sequence in the forward direction, while has

the crux of the entire sequence in the backward direction. In

this method, the importance of a particular token is not

considered, an all tokens have equal weight. In RNN with

attention, varying weight is considered for the input tokens in

the sequence. The attention mechanism does this. In short,

by name, it implies that different attention is given to

different sequences. In the attention mechanism, the weighted

sum of the output feature is calculated after calculating the

importance of each token (weight). can be calculated using

the Batch-wise Matrix Multiplication function of PyTorch. We

have seen details of how BMM works in Chapter 4, Using

RNN for While implementing this network, we will see how to

use BMM.

Understanding Attention Mechanism

Understanding the The main part of this recipe is to design

the model, which takes the help of attention mechanism for

text classification. In this model, the implementation here is

very similar to the attention mechanism implemented in

Chapter 4, Using RNN for The forward function takes the

input sentence in shape [input size, batch size]. Trained

embedding’s lookup is applied to this representation to

convert it to the shape of [input size, batch size, embedding’s

size]. This input is passed on to the LSTM cell, along with

the hidden and cell state. LSTM produces output for all the

time steps, along with hidden and cell states. LSTM output,

along with the final state, is given to attention_net function

carries out the batch-wise matrix multiplication between LSTM

output and the hidden state to produce attention Attention

weights are then used to produce an updated hidden state,

and a linear transformation is applied to the updated hidden

state to convert it into output classes. A softmax

transformation is applied after that to normalize the output:

class RNNAttentionModel(torch.nn.Module):

def __init__(self,config_object,vocab_size, weights):

super(RNNAttentionModel, self).__init__()

self.batch_size = config_object.batch_size

self.class_num = config_object.class_num

self.hidden_size = config_object.hidden_size

self.vocab_size = vocab_size

self.embed_size = config_object.embed_size

self.device = device

self.word_embeddings = nn.Embedding(self.vocab_size,

self.embed_size)

self.word_embeddings.weight.data.copy_(weights)

self.word_embeddings.weight.requires_grad = True

self.lstm = nn.LSTM(self.embed_size, self.hidden_size)

self.label = nn.Linear(self.hidden_size, self.class_num)

def attention_net(self, lstm_output, final_state):

hidden = final_state.squeeze(0)

attn_weights = torch.bmm(lstm_output,

hidden.unsqueeze(2)).squeeze(2)

soft_attn_weights = F.softmax(attn_weights, 1)

new_hidden_state = torch.bmm(lstm_output.transpose(1, 2),

soft_attn_weights.unsqueeze(2)).squeeze(2)

return new_hidden_state

def forward(self, input_sentences):

input = self.word_embeddings(input_sentences)

input = input.permute(1, 0, 2)

h_0 = Variable(torch.zeros(1, self.batch_size,

self.hidden_size)).to(self.device)

c_0 = Variable(torch.zeros(1, self.batch_size,

self.hidden_size)).to(self.device)

output, (final_hidden_state, final_cell_state) = self.lstm(input,

(h_0, c_0))

output = output.permute(1, 0, 2)

attn_output = self.attention_net(output, final_hidden_state)

logits = self.label(attn_output)

return torch.softmax(logits, dim=1)

In addition to this network, I have to build a network without

attention mechanism while keeping everything the same,

including the data pipeline input, optimizer, and loss function.

I have compared the performance of the network with

attention to the network without it.

Ensuring In the earlier chapters, we made many comparisons

and ignored the fundamental aspect of reproducibility. In

networks, the weight is initialized randomly, and it has a

great effect on convergence. To compare two networks, we

must initialize the weights of the two networks in a

reproducible manner. PyTorch has a mechanism to facilitate

reproducible results by fixing seed and setting the engine as

deterministic. It can be done as follows:

fixing seeds and device

torch.manual_seed(0)

np.random.seed(0)

device = torch.device(“cuda” if torch.cuda.is_available() else

“cpu”)

torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmark = False

Examining The accuracy comparison of the network with and

without attention is given below. The RNN with attention

logic reached up to 90% accuracy, whereas the RNN without

attention logic reaches about 60% accuracy in the same

number of iterations:

Figure 7.13: Comparing the increase in accuracy for a model with

and without attention.

The loss of networks with and without attention logic is as

follows: the network with attention mechanism achieved

minimum loss below 0.05, whereas the network without

attention mechanism achieved minimum loss of 0.13 in the

same number of iterations:

Figure 7.14: Comparing decrease in loss for a model with and

without attention.

A similar trend has been observed in the case of test

accuracy. The RNN with attention logic reached up to 87%

accuracy, whereas the RNN without attention logic reaches

around 65% accuracy in the same number of iterations:

Figure 7.15: Comparing the increase in test accuracy for a model

with and without attention.

The preceding experiments provide clear intuition that

attention mechanism provides better and faster convergence

as compared to a network architecture without it. A well-

illustrated code block with all the required functions to

reproduce these results is given at

Various variants of the attention mechanism are available, and

two of them are as listed here:

Proposed by Dzmitry Bahdanau et al. in their paper Neural

Machine Translation by Jointly Learning to Align and

Proposed by Minh-Thang Luong et al. in their paper Effective

Approaches to Attention-based Neural Machine

Check out these papers, try to implement the logic in the

preceding code, and then compare the efficiency of different

attention mechanisms on this task. I used Dzmitry

Bahdanau’s implementation in the preceding code.

Take a look at the following link:

Text classification research with attention-based recurrent

neural networks:

http://univagora.ro/jour/index.php/ĳccc/article/download/3142/pdf

Building Named Entity Recognition

Named entity recognition or named entity resolution is a

similar concept known as NER in short. NER tags the

subpart of the sentences with a certain class. This subpart

can be one word or a combination of many words occurring

together. NER is the hot topic in the field of NLP and has

several practical use cases. Some of them are given here:

Writing an efficient search engine by extracting key terms

from the text.

Suggesting reading content based on the entity mentioned in

the literature, and similarly, suggesting a product based on its

description.

Keeping an eye on the market by parsing feeds from Twitter.

In this section, we will see some of the practical means to

implement the NER task. Many datasets are available to

experiment with NER, and some of them are listed below. In

this chapter, I will use the CONLL2003 datasheet to

demonstrate convergence. CONLL2003 was released by

Conference on Computational Natural Language Learning. The

CONLL2003 dataset has nine unique entities. It has four

entity types tagged: Location Organization and Miscellaneous

All these types of the entity have a beginning (B-TYPE) and

intermediate tag (I-TYPE) constituting eight unique entity

classes. Additionally, a word that does not belong to any of

the categories assigned to class All these combined constitute

nine classes. There are tab-separated columns, and the

respective columns are: word token, parts of speech of the

given token, syntactic chunk tag, and entity type. The pre-

processed CONLL2003 data is kept at The dataset looks as

follows:

follows:

follows:

follows:

follows:

follows:

follows:

follows:

The NER task can be carried out by taking a word and the

character level features:

Word level Each word token is embedded with an n-

dimensional Glove vector. To predict class for the given token,

we need to have a context. Context means the surrounding

words; I have two words after and before the target word as

context here, so there will be five words in each input. Each

word can have 100-dimensional Glove Embedding. If a batch

of 32 words is taken, the resultant shape of the input will be

[32, 5, 100]. The target will be one hot encoded vectors [0, 1,

0, 0, 0, 0, 0, 0, 0], and the final batch of the target will

have the shape: [32, 9]:

Figure 7.16: An illustration showing how word-based feature is

generated.

The preceding figure shows the following:

The features are generated taking context window as 2.

Labels are converted into one hot embedding.

This input representation will now be processed with the

LSTM network. The detailed implementation is covered in the

next section of the recipe. Similarly, we could use convolution

networks here. There will be a change in the representation.

Let’s take that the max size of our word as 10, and our

vocabulary will have a maximum of 69 characters. Each word

can be represented as the matrix of [10, 69] in one hot

encoded form. This is for one word if we consider the

window of 2 words before, and the input size will be [5, 10,

69] after including target word. Processing such input in the

batch of 32 will give the final size as [32, 5, 10, 69], which

will be the input to the convolutional layers.

Figure 7.17: An illustration of how character-based feature is

generated.

The preceding figure shows the following things:

The features are generated taking context window as 2

The labels are converted into one hot embedding

Word-level NER

NER using word-level features: I used the RNN with attention

here to get the state-of-the-art model. This model was

explained in the previous recipe—advancing sentiment

analysis. This model will take the input representation, as

discussed in the previous section, and give a probability for

each class. Data loaders are essential to complete the task in

constant memory. The main thing to observe is how the data

loader is implemented. I have used a custom data loader and

not the Torchtext data loader. The data loader is designed to

provide input embedded with Glove 100-dimensional

embedding. So, we are not using any embedding layer in the

network and are directly loading Glove Vector:

class RNNAttentionModel(torch.nn.Module):

def __init__(self,batch_size, class_num, hidden_size,

embed_size):

super(RNNAttentionModel, self).__init__()

self.batch_size = batch_size

self.class_num = class_num

self.hidden_size = hidden_size

self.embed_size = embed_size

self.word_embeddings.weights = nn.Parameter(weights,

requires_grad=False)

self.lstm = nn.LSTM(self.embed_size, self.hidden_size)

self.label = nn.Linear(self.hidden_size, self.class_num)

def attention_net(self, lstm_output, final_state):

hidden = final_state.squeeze(0)

attn_weights = torch.bmm(lstm_output,

hidden.unsqueeze(2)).squeeze(2)** soft_attn_weights =

F.softmax(attn_weights, 1)

new_hidden_state = torch.bmm(lstm_output.transpose(1, 2)

soft_attn_weights.unsqueeze(2)).squeeze(2)

return new_hidden_state

def forward(self, input_sentences):

input = input_sentences.permute(1, 0, 2)

if self.batch_size is None:

h_0 = Variable(torch.zeros(1, self.batch_size,

self.hidden_size).type(torch.FloatTensor)).to(device)

c_0 = Variable(torch.zeros(1, self.batch_size,

self.hidden_size).type(torch.FloatTensor)).to(device)

else:

h_0 = Variable(torch.zeros(1, self.batch_size,

self.hidden_size).type(torch.FloatTensor)).to(device)

c_0 = Variable(torch.zeros(1, self.batch_size,

self.hidden_size).type(torch.FloatTensor)).to(device)

output, (final_hidden_state, final_cell_state) = self.lstm(input,

(h_0, c_0)) # final_hidden_state.size() = (1, batch_size,

hidden_size)

output = output.permute(1, 0, 2) # output.size() =

(batch_size, num_seq, hidden_size)

attn_output = self.attention_net(output, final_hidden_state)

logits = self.label(attn_output)

return torch.softmax(logits, dim=1)

The following is the performance on the train data. The

accuracy reaches up to about 87%, and loss decreases

considerably:

Figure 7.18: Decrease in the loss and increase in accuracy on

train data when model trains NER task taking word-level feature.

The performance of the model on the test data is also

notable; the accuracy reaches 87% in this case as well. This

means the implementation generalizes well on unseen data:

Figure 7.19: Increase in accuracy on test data when model trains

NER task taking word-level feature.

The entire implementation with pre-processing and data

loaders is provided at

Character-level NER

The following model has CNN components to process our

character-based representation. The model accepts [128, 5, 10,

68], dimensional input wherein 128 is the batch size, 5 is

target plus context words, 10 is the max character in the

word, and 68 is several unique characters considered. In

another term, if we compare the input to the image, 128 is

the batch size, 5 is similar to channels in the image of dim

10*68. The input shape passes through a series of

convolution operations, and the number of channels increases

from 5 to 40. The resultant tensor is passed to a linear layer

to convert it to output probabilities after the application of

the softmax layer:

class CNNmodel(torch.nn.Module):

def __init__(self,batch_size, class_num):

super(CNNmodel, self).__init__()

self.batch_size = batch_size

self.class_num = class_num

self.conv1 = nn.Conv2d(in_channels=5, out_channels=10,

kernel_size=3, stride=1)

self.conv2 = nn.Conv2d(in_channels=10, out_channels=20,

kernel_size=3, stride=1)

self.conv3 = nn.Conv2d(in_channels=20, out_channels=40,

kernel_size=3, stride=1)

self.linear1 = nn.Linear(in_features=40*4*62,

out_features=self.class_num)

def forward(self, input):

conv1_out = self.conv1(input)

conv2_out = self.conv2(conv1_out)

conv3_out = self.conv3(conv2_out)

linear1_out = self.linear1(conv3_out.view(self.batch_size,-1))

return torch.softmax(linear1_out, dim=1)

The following is the performance on the train data. The

accuracy reaches about 85%, and the loss decreases

considerably:

Figure 7.20: Decrease in loss and increase in accuracy on train

data when model trains NER task taking character-level feature.

The model’s performance on the test data is also notable; the

accuracy reaches 85%. This means our implementation

generalizes well on unseen data as well:

Figure 7.21: Increase in accuracy on test data when model trains

NER task taking character-level feature.

The entire implementation with pre-processing and data

loaders is provided at

Compare the model with and without attention mechanism.

Design an ensemble taking both word and character-level

features and see whether it works better.

Many other datasets are available for the NER task, and some

of them are given as follows. Use this dataset and keep

learnable embedding, as it would be harder to find trained

embeddings for German and Portuguese. See if your classifier

converges on these datasets:

W-NUT2017

GermEval2014

Europeana Newspapers

HAREM

A Survey on Recent Advances in Named Entity Recognition

from Deep Learning models:

https://www.aclweb.org/anthology/C18-1182

Conclusion

We implemented more on NLP applications in this chapter,

and we covered 70% of the NLP applications that developers

work with. We started with topic modeling and visualization.

Topic modeling is an important area of research, and it has a

lot yet to be discovered. The next big thing is summarization.

We saw how to practically perform extractive summarization.

You can go ahead and write a sequence to sequence the

network for abstractive summarization. We saw line by line

how a transformer works, what input it takes, and how to

implement it easily. We also saw applications like sentiment

analysis and named entity recognition, which is a form of

classification task at the core. The most important thing was

to know how transformers are implemented line by line. This

chapter will surely help you going forward. After completing

this chapter, you can start building your kernels in the Kaggle

competition by participating in the preliminary competition.

The next chapter will take you through the application of

complex architectures in NLP.

CHAPTER 8

Application of Complex Architectures in NLP

This chapter is perhaps the most practical and conceptually

advanced one in the entire book. It covers practical

implementations that are among the most cited research in

2017 and 2018. Topics covered in the chapter with their

importance are as summarized as follows; SentencePiece

covers the essential techniques to decrease the effective

vocabulary size and augment the text data for text-related

applications. We will experience the power of automatic Ml

with the Random Multi-Model After this, we will discuss how

to get multiple models by training the network just once,

using a snapshot ensemble technique. This chapter covers the

Siamese network, which is used in Apple’s Face ID and can be

used for text comparison as well. We will also cover two

amazing topics: CTC loss and image captioning. CTC loss is

yet another kind of loss function used in speech-related

applications. Image captioning explores how to generate a

caption for the image; in this recipe, we will see how to use

CNN and RNN layers in a single network.

Structure

The following topics will be covered in this chapter:

Understanding SentencePiece

Understanding random multi-model

Ensembling by taking a snapshot

Getting to know Siamese networks

Application of RCNN

Understanding CTC loss

Captioning image

Objective

Understanding sentence piece

Understanding random multi-model

How to the ensemble by taking a snapshot

Getting to know Siamese network

Understanding CTC loss

Technical Requirements

The code for this chapter can be found in the Ch8 folder at

GitHub repository To understand this chapter, you must have

basic knowledge about the following Python packages:

Torchtext

Nltk

Matplotlib

Torchvisio

Torch

Tqdm

Pandas

Numpy

Pillow

RMDL

Sentencepiece

Scikit_learn

TensorboardX

You can install these requirements by installing all the

packages listed in requirements.txt by simply issuing pip

install -r

Understanding SentencePiece

SentencePiece is the neural network-based tokenization and

de-tokenization technique often used in neural network-based

language generation tasks where vocabulary size limit is an

important factor. SentencePiece allows us to make an end-to-

end system that does not depend on language-dependent pre-

processing and post-processing. It uses the bit pair encoding

and the unigram language SentencePiece is similar to

subword-nmt and but it is a little advanced. The bit pair

encoding algorithm used in the Sentnecepiece is slightly

different from the original bit pair encoding algorithm. In this

recipe, we will understand how bit pair encoding and unigram

language model help design SentencePiece.

There are some great features of the SentencePiece algorithm,

and some of them are given as follows:

A number of unique tokens are In ordinary tokenization, the

final vocabulary is infinite, and the final vocabulary is made

limited by putting threshold. This leads to loss of information;

especially rare word results in a token. Otherwise, standard

tokenization techniques have infinite tokens. With sentence

piece, the final token size is always pre-decided, and the

algorithm performs accordingly while training.

Training from Subword techniques like subword-nmt and

WordPiece require pre-tokenized sentences. Sentence piece

works without pre-tokenized sentences and allows an

algorithm to be used on languages like Chinese and Japanese,

where no explicit rule for tokenization exists.

Whitespace is treated In the standard tokenization techniques,

the word is tokenized into following three tokens [“Hello”,

“world”, This method is not reversible, as detokenization does

not yield the original token. Tokenized != detokenize “world”,

SentencePiece treats the strings as the sequence of Unicode,

and the white space also considered to be one of the

characters in the Unicode. In SentencePiece, the white space

is replaced with the”_ “character, which is U+2581 in the

Unicode. According to sentence piece, the word will be

treated as "Hello world."→"Hello_world."→["Hello][_wor][ld][.].

Since the white space is preserved, we can detokenize the

text without any ambiguity, as shown here:

detokenized = ''.join(["Hello","_wor","ld",["."]]).replace('_',' ')

Similarly, the Chinese language can be tokenized as follows;

remember the Chinese do not have explicit spaces between

words.

Subword regularization: This is the technique to virtually

augment the train data by subword sampling. It helps

enhance the robustness of the natural machine translation

model. The salient features of the sentencing piece are listed

here:

Purely No intermediate pre-processing techniques are required.

Language There is no need for language-specific pre-

processing; it can be applied to any language.

Tokenization and detokenization are obtained in a

deterministic way as long as the same model is used.

Vocabulary ID Sentence Piece manages vocabulary and can

directly generate the vocabulary ID sequence from a raw

sentence.

The sentence piece takes about 6 MB of memory and can

process 50k sentences.

To demonstrate the use of SentencePiece, we will use the

official sentence piece Python API. The official SentencePiece

can be installed as shown here.

On Ubuntu, the build tools can be installed with

sudo apt-get install cmake build-essential pkg-config libgoogle-

perftools-dev

Installation from source requires the building tool

sudo apt-get install cmake

After building and installing sentence piece:

% cd /path/to/sentencepiece

% mkdir build

% cd build

% cmake ..

% make -j $(nproc)

% sudo make install

% sudoldconfig -v

Alternatively, you can install it as a Python package:

pip install sentencepiece

Bit Pair It is a simple data compression technique works by

replacing the most occurred pair of byte by a single unused

byte. This algorithm is adapted for word segmentation. Here,

for the task on word segmentation, character pairs are

replaced instead of the byte pair. To give you an idea of how

bit pair encoding works, I have given a simple example as

follows: Let’s say we have a word Here, the character pair

mm occurs most often, so taking an assumption Z = the

new sequence will be Now the character mb is repeated more

often, so it is replaced by R = The new sequence will be We

can stop here based on the hyperparameters provided. Now,

the original word, when segmented, will be [“mm”, “mb”, “d”,

“mm”, “mb”, The model is trained with this tokenization and

Z = R = mb serves as the key-value pairs in the model.

When this model is called, all the given text will be replaced

by key-value pairs. Unicode has 17 planes, and each plane has

65, 536 Unicode characters. This gives us a total of 1, 114,

112 characters. It is highly unlikely that one corpus will have

all these characters, so we can use all the remaining

characters to replace the existing character paints and

represent them as key-value pairs. Sentence Piece can be

easily integrated with your existing pipeline using its Python

API. Sentence piece can be simply imported as:

import sentencepiece as spm

SentencePiece can be trained by providing any text file. Upon

training, it yields the model and vocab file. In the following

sentence, I am using a book Stories of Great Inventors by

Hattie E. Macomber as the input. After training, m.model and

m.vocab will be written to the disk:

spm.SentencePieceTrainer.train(‘--input=---.txt --model_prefix=m --

vocab_size=2000’)

You can load the m.model as follows:

sp = spm.SentencePieceProcessor()

sp.load(‘m.model’)

Encoding sentence to pieces and ids:

print(“As Pieces : “,sp.encode_as_pieces(‘My name is Sunil,

and I like to Learn.’))

print(“As Ids : “,sp.encode_as_ids(‘My name is Sunil, and I

like to Learn.’))

Decoding original sentence from pieces and ids:

print(“Joining Pieces : “,sp.decode_pieces([‘▁My’, ‘▁name’, ‘▁is’,

‘▁’, ‘J’, ‘an’, ‘ki’, ‘,’, ‘▁and’, ‘▁I’, ‘▁like’, ‘▁to’, ‘▁teach’, ‘.’]))

print(“Joining by Ids : “,sp.decode_ids([494, 396, 31, 201, 306,

229, 3, 10, 6, 75, 8, 612, 25, 89, 30, 4]))

Getting vocab size (This will help initialize embeddings before

passing data to CNN and RNN).

print(“Vocab Size : “, sp.get_piece_size())

Getting piece by id and id by piece can help in the decoding

phase of translation or summarization:

print(“Getting Piece by id : “, sp.id_to_piece(209))

print(“Getting Id from Piece : “,

Treating an unknown token. By default, SentencePiece assigns

id = 0 for unknown token:

print(“Getting id for unknown word :

“,sp.piece_to_id(‘__UNKNOWN__’))

Sampling n-best segmentation for the given input. When the

model is trained with type --model_type=unigram, you can

perform the sampling for augmentation and make more

robust models. A sampling of any word can be performed as

follows:

for n in range(10):

print(sp.sample_encode_as_pieces(‘Good Morning’, -1, 0.1))

>>> [‘▁Good’, ‘▁M’, ‘or’, ‘n’, ‘ing’]

>>> [‘▁Good’, ‘▁’, ‘M’, ‘or’, ‘n’, ‘i’, ‘ng’]

>>> [‘▁’, ‘G’, ‘o’, ‘o’, ‘d’, ‘▁M’, ‘or’, ‘n’, ‘ing’]

>>> [‘▁Good’, ‘▁’, ‘M’, ‘or’, ‘n’, ‘ing’]

>>> [‘▁’, ‘G’, ‘o’, ‘o’, ‘d’, ‘▁M’, ‘or’, ‘n’, ‘ing’]

>>> [‘▁Good’, ‘▁M’, ‘o’, ‘r’, ‘n’, ‘ing’]

>>> [‘▁Good’, ‘▁M’, ‘or’, ‘n’, ‘i’, ‘ng’]

>>> [‘▁Good’, ‘▁M’, ‘o’, ‘r’, ‘n’, ‘i’, ‘ng’]

>>> [‘▁G’, ‘o’, ‘o’, ‘d’, ‘▁’, ‘M’, ‘o’, ‘r’, ‘n’, ‘i’, ‘n’, ‘g’]

>>> [‘▁Good’, ‘▁M’, ‘o’, ‘r’, ‘n’, ‘in’, ‘g’]

Similarly, id for each piece will be generated by the following

syntax:

for n in range(10):

print(sp.sample_encode_as_ids(‘Good Morning’, -1, 0.1))

You can experiment with SentencePiece by a running script at

Integrating the SentencePiece with the existing pipeline is very

easy. In PyTorch, you can define an additional function in the

class that defines the model. The dummy implementation will

look like this:

class dummy_with_sentecencepiece(torch.nn.Module):

def __ini__(self, sp, embed_size):

super(dummy_with_sentecencepiece, self).__init__()

self.sp = sp

self.embed = torch.nn.Embeddings(input_size =

self.sp.get_piece_size(), output_size = embed_size)

self.other_layer_1 = torch.nn.LSTM(…)

self.other_layer_2 = torch.nn.Conv2D(…)

def forward(self, input_sent):

pieces_batch = self.apply_sentencepiece(input_sent)

padded_batch = self.padding(self, batch)

embedded_sent = self.embed (padded_batch)

applying other layers on to embedded output

def apply_sentencepiece(self, input_sentences)

“””Getting pieces ids”””

return self.sp.encode_as_ids(input_sentence)

def padding(self, batch):

“pad_to_make_all_pieces_equal_and_return”

return batch_with_padding

The dummy_with_sentecencepiece class will have four

methods. The init method will take various parameters

necessary to initialize layers, which can be embedded,

convolution, and RNN layers. The embedding layer will take

SentencePiece vocabulary size as the input size and the

embed size as the output size. When an input is given to

the apply_sentencepiece method, it returns pieces for the

given sentences. Such pieces are then padded to make the

size of all equal to a sentence with the highest pieces. Now,

the padded batch with ids is transferred to the embedding

layer, and the output of the embedding layer is passed on to

another layer for specific tasks.

You can check out the following links:

Neural machine translation of rare words with subword units:

https://www.aclweb.org/anthology/P16-1162

Subword regularization: Improving neural network translation

models with multiple subword candidates:

https://arxiv.org/abs/1804.10959

SentencePiece: A simple and language-independent subword

tokenizer and detokenizer for neural text processing:

https://arxiv.org/abs/1808.06226v1

Understanding Random Multi-Model

Random multi-model deep learning or RMDL are the

techniques inspired by Auto ML, Auto-ml, or Automatic

Machine Learning. It is a group of techniques focused on

how to apply machine learning end to end on any practical

task. There are many tools available, and some of them are

given here:

A Bayesian hyperparameter optimization applied to WEKA.

A Bayesian hyperparameter optimization applied to scikit-learn.

A Python library capable of automatically creating and

optimizing pipelines with the help of genetic programming.

A grammar-based framework utilizing genetic programming for

optimizing scikit-learn.

Auto An open-source Python package for neural network

architecture tuning.

Google has also come up with the Auto-ml offering in its

cloud. Here are a few advantages of using the auto-ml tool

in development:

It provides a relative idea about parameters that can provide

better results.

It eliminates the chances of a model being falsely declared

non-convergent after a few manual experiments.

When a few parameters are known, the user can fine-tune

manually.

It allows the developer to focus on more productive tasks.

It seems that auto-ml can solve everything related to tuning

the model after developing it. It’s true, but there are also

certain shortcomings of the auto-ml techniques. Auto-ml

generally relies on checking the effect of model architecture

and parameters by training each model, and it requires

immense computing resources. Auto-ml is often not applied

to bigger models with millions of parameters. Considering the

current speed of computing, auto-ml is only viable for smaller

models with a few hundred thousand parameters. RMDL is

also a kind of model inspired by Auto-ml approaches.

RMDL solves the problem of finding the optimum deep

neural network architecture by simultaneously improving the

accuracy and robustness of deep learning architecture. RMDL

is an ensemble consisting of three kinds of network

architecture:

Feed Forward Network

Convolution Neural Network

Recurrent neural network

The overall model looks like this:

Figure 8.1: RMDL schematic architecture.

Source: https://github.com/kk7nc/RMDL

Parameters, like several layers in FFN, CNN, and RNN, are

changed randomly, a defined number of random

configurations are tested on the data, and the best model is

given back. With three essential components, RMDL can work

with all types of data like text, images, video, and fully

structured data. In total, nine deep learning models are

generated: three each from DNN, FFN, and CNN. All of them

are unique owing to random creation. The following equation

can explain the in-detail function of the ensemble:

Where M is the number of random models, and is the

prediction of model j on the data point These outputs from

all the models are collected . The Soft-max is applied to the

output of all the models, and then the prediction is

considered by majority vote.

This model is trained with SGD, Adam, RMSProp, Adagrad,

and Adamax as optimizers. The interesting thing here is that

all models trained again with random optimizer to ensure

that model should be tested in all possible conditions, which

might help in convergence.

Creating Flexible Networks

We must first understand how variation in the model

architecture is made by changing the parameters of the layers.

PyTorch has excellent support to build the model, which gets

deeper and shallower only by changing certain parameters.

While building such an ensemble model, it is advisable to

stack all the layers in to list and then use nn. Sequential

method is used to connect all layers to form the model.nn.

Sequential can be used flexibly, as shown:

layers.append(layer_1)

layers.append(layer_2)

self.layers = nn.Sequential(*layers)

A flexible model with dense Let’s say you want to build a

dense network with variable layers and perceptron and

dropout in between. You can implement such a model as

follows:

perceptron_in_layers = [200, 100, 50, 25]

dropout = 0.2

activation = torch.nn.ReLU()

layers = []

num_layers = len(perceptron_in_layers)

for i in range(0,num_layers-1):

layers.append(torch.nn.Linear(in_features =

perceptron_in_layers[i], out_features =

perceptron_in_layers[i+1]))

layers.append(activation)

layers.append(torch.nn.Dropout(dropout))

layers = nn.Sequential(*layers)

One more thing to learn here is that it’s always better to

declare what the model is being used for. We were not

following this convention till time, but it is required. Some

layers like dropout and batch-norm function differently when a

model is used for train and when a model used for test. If

you use you will see the following output, which shows

parameters for the model:

layers.train()

Sequential(

(0): Linear(in_features=200, out_features=100, bias=True)

(1): ReLU()

(2): Dropout(p=0.2)

(3): Linear(in_features=100, out_features=50, bias=True)

(4): ReLU()

(5): Dropout(p=0.2)

(6): Linear(in_features=50, out_features=25, bias=True)

(7): ReLU()

(8): Dropout(p=0.2)

)

If you use the following output will be shown. It lets the

model know that the weight need not be updated, and only

forward pass must be done without accumulating parameters

for the backward pass. If the model is declared for evaluation,

it affects layers like batch normalization and dropout. These

layers behave differently during training and evaluation.

A flexible model with RNN This was about the Feedforward

model. Now, let’s see which parameters are available in the

recurrent network if one wants to develop a flexible

architecture. GRU or LSTM or Vanilla RNN has common

parameters that can be declared to change the network

architecture. For example, with LSTM, one can change various

parameters, as follows:

The number of features of the input will generally be equal to

the size of the embedding.

Hidden state size for any RNN unit.

RNN can be stacked in the layers, and it looks as follows.

More layers are required for more complex data.

If bidirectional is true, RNN runs in both directions of the

sequence.

Figure 8.2: An illustration showing how bidirectional LSTM works

and how the final output is provided.

The final output at each time step will be the concatenation

of both the forward and backward output from forward and

backward run. (Implementation-wise, RNN runs in only one

direction, but the sequence is reversed and given to RNN,

and the output so produced is called the reverse direction

output.)

Various network architectures can be generated randomly

using these options. In addition, various other additives like

attention mechanism.nn can be applied to RNN. Sequential

(*layers) can be used to stack LSTM layers too.

Using RMDL

Random multi-model deep learning for classification is the

framework for testing various network topology and with

varying hyper-parameters on the given data to get the best

model with the highest accuracy. The implementation of

RMDL is provided with the git repository: RMDL can be

simply installed with pip install

from keras.datasets import mnist

import numpy as np

from RMDL import RMDL_Image as RMDL

Applying RMDL on Reuter Data

Reuters text classification is the benchmark data set for multi-

label and multi-class classification. The dataset has 90

classes, 7769 training documents, and 3019 testing

documents. More about this dataset is available from:

https://archive.ics.uci.edu/ml/datasets/reuters-

21578+text+categorization+collection

Loading and pre-processing Reuters corpus is present in the

NLTK package; if not present, it can be downloaded with

Once downloaded, train and test docs can be loaded as

follows:

documents = reuters.fileids()

train_docs_id = list(filter(lambda doc: doc.startswith(“train”),

documents))

test_docs_id = list(filter(lambda doc: doc.startswith(“test”),

documents))

After separating x and y for the train, labels with y are

binarized using

X_train = [(reuters.raw(doc_id)) for doc_id in train_docs_id]

X_test = [(reuters.raw(doc_id)) for doc_id in test_docs_id]

mlb = MultiLabelBinarizer()

y_train = mlb.fit_transform([reuters.categories(doc_id)

for doc_id in train_docs_id])

y_test = mlb.transform([reuters.categories(doc_id)

for doc_id in test_docs_id])

Training the Data prepared in the previous step is given to

the RMDL module, as shown in the following code block. A

model constraint is provided, which specifies how many layers

a network can have for Feedforward RNN and CNN

subnetwork. The following model network specifies constraints

with variable. The Text_Classification function takes Y for train

and test, batch size, model constraints, and embeddings file

as input:

batch_size = 100

sparse_categorical = 0

Random_Deep = [3, 3, 3] ## DNN--RNN-CNN

RMDL.Text_Classification(X_train, y_train, X_test, y_test,

batch_size=batch_size, sparse_categorical=True,

random_deep=Random_Deep, epochs=n_epochs,

GloVe_dir=”../embedidngs/glove.6B/”)

After this, RMDL starts network searching, and teh accuracy

for each network will be shown in the verbose output. At the

end, the best model will be returned. The code related to

techniques that can be used in PyTorch to create an RMDL

model is given at The usage of the RMDL package and the

Reuter data is given at

RMDL can be applied to a variety of datasets in the text and

image domain. For example, have used only a few arguments,

including and In practice, RMDL can take more than 20 such

arguments and provide fine-grain control over the experiments

to be performed. For more information related to the

parameters RMDL can take, you can refer to

https://github.com/kk7nc/RMDL and some of the examples

provided by the author to run RMDL on a variety of datasets

at

For more details, refer to the following:

Random Multimodel Deep Learning (RMDL) for classification:

https://arxiv.org/abs/1805.01890

Ensembling by Taking a Snapshot

Ensemble techniques are famously used to combine many

weak classifiers and form a stronger one. Ensemble methods

are traditionally used to produce state-of-the-art results in the

famous competition like ImageNet. There are three types of

ensembling techniques, namely:

Bagging

Boosting

Stacking

Let’s understand them all one by one:

Bagging is also known as Bootstrap

It is a parallel ensemble wherein each model is built

independently using a subset of the data.

The output of all classifiers is weighted equally.

Bagging decreases variance, not bias.

Suitable for a complex model with high variance low bias.

Random forest is one of the classifiers where multiple weak

trees are formed, and the decision is made based on a

combination of the vote.

A different model is constructed using a different subset of

the data.

The next model takes the subset wherein the previous model

performed poorly and tries to perform better on the given

subset.

Using a weighted voting final classifier combines multiple

classifiers.

This decreases variance, not bias.

Boosting is good for a model with low variance and high

bias.

Gradient boosting is an example of a tree-based boosting

algorithm.

Stacking:

It is normally used in competitions, commonly those hosted

by Kaggle and Coda labs.

Using multiple models of a different kind and averaging the

output produced by all algorithms on the single dataset to

get higher accuracy of prediction.

In this chapter, we will discuss one of the techniques that fall

into the category of bagging. This technique is unique and

can be implemented with very minimal changes in the

existing pipeline, so I have selected it to be included in this

book. This technique was proposed by Guo Huang and

coworker in their research paper Ensembles: Train 1, get M for

It is an innovative technology that takes advantage of non-

convex surfaces formed by features.

With an increase in the features, the number of local minima

or maxima increases exponentially. There is no sure-shot way

to find global minima or maxima. Often, the optimizers are

found to get stuck in the local minima and produce a model

with high variance. To understand this, let’s visualize feature

space once. Take a look at the following screenshot:

Figure 8.3: (Left) How the standard learning rate converges the

model by providing one model. (Right) How snapshot ensemble

provides a different mode for each minima using cyclic learning

rate.

The diagram on the left shows the typical energy landscape

with only three features. In machine learning, we try to

decrease the loss of the model, and the point where the loss

is minimum is known as global minima, and the model

should ideally converge into the global minima. As there is

no sure shot method to find the global minima, the task is

difficult. At the same time, the local minima are the place

minimal as compared to close vicinity. In addition, the

number of local minima exponentially increases with an

increase in the features. The stochastic gradient descent

optimization technique often gets stuck in the local minima

and produces a poor result. The snapshot ensembles

technique solves this problem mindfully. Snapshot ensembles

exploit the behavior of convergence of the learning rate to get

better models. When the learning rate is high, the gradient

overshoots and escapes from the minima, and when the

learning rate is low, it converges into the local minima. With

this paper, the author proposes to have M parallel models in

one training shot. The training epoch T is divided into M

cycles. Each cycle starts with a higher learning rate and

monotonously decreases to ensure convergence in the local

minima. M models from the M cycles are collected and used

for making the final decision, which is the average of all the

models. The monotonously decreasing function is given as: .

Here, is the new learning rate, is the previous learning rate,

T is the total number of epochs, and M is the total number

of learning rate oscillation cycles.

In Chapter 5, Applying CNN In NLP we covered a recipe Word

Level CNN For Text To keep the implementation simple and

easy to understand, we are incorporating snapshot ensemble

implementation of word-level CNN for text classification. We

will use the same large movie review dataset. With the same

loss function and optimizer, we will incorporate three

additional mechanisms:

A function to decrease loss monotonously.

Measures to record the snapshot at the end of each cycle.

Measures to use given a snapshot for the prediction.

The Learning Rate Modifier

The optimizer uses a cyclic annealing schedule to quickly

lower the learning rate and converge the model in the nearest

local minima. While in training, the learning rate is decreased,

as shown here:

Figure 8.4: Cyclic changes in the learning rate.

In each cycle, the learning rate starts with some high value,

and then it monotonically decreases to converge the learning

in local minima, which is provided as one of the snapshot

models. The X-axis shows the cycles, and the Y-axis shows

the learning rate. Each cycle starts with a higher learning rate

and quickly decreases to converge in the local minima. This

functionality is implemented with Python definition

def proposed_lr(initial_lr, iteration, epoch_per_cycle):

return initial_lr * (math.cos(math.pi * iteration /

epoch_per_cycle) + 1) / 2

Recording Snapshots

There is no change in the model, but there is a change in

the training schedule. The total epoch and the number of the

cycle are defined. The epochs are equally divided into each

cycle by dividing total epochs with several cycles. An initial

learning rate is fixed. Here, we have fixed 300 as a total

epoch, and training will be carried out for 60 cycles. Each

cycle will have 300/60 = 5 epochs. In each cycle, the loss is

allowed to decrease quickly using the proposed_lr function. A

total of 60 model snapshots are collected, one for each cycle

taking the snapshots = [] as the model accumulator. Here,

each snapshot is the weight for each model. In PyTorch, the

weight of an individual model can be accessed by calling the

models’ state_dict() function. Similarly, we will get the weight

of the model using

epochs = 300

cycles = 60

snapshots = []

_lr_list, _loss_list = [], []

count = 0

initial_lr = 0.1

epochs_per_cycle = epochs // cycles

writer = SummaryWriter()

total_iterations = 0

for i in range(cycles):

lr = initial_lr

for j in tqdm(range(epochs_per_cycle)):

_epoch_loss = 0

lr = proposed_lr(lr, j, epochs_per_cycle)

optimizer.state_dict()[“param_groups”][0][“lr”] = lr

for batch in train_iter:

feature, target = batch.review, batch.label

optimizer.zero_grad()

predictions = cnn(feature.to(device))

loss = criterion(predictions.type(torch.FloatTensor),

target.type(torch.FloatTensor))

loss.backward()

optimizer.step()

_epoch_loss = _epoch_loss + loss.item()

acc = binary_accuracy(predictions.type(torch.FloatTensor),

target.type(torch.FloatTensor))

writer.add_scalar(‘epoch_loss’,_epoch_loss, total_iterations)

writer.add_scalar(‘learning_rate’,lr, total_iterations)

total_iterations = total_iterations +1

snapshots.append(cnn.state_dict())

Now we have 60 snapshots, and we can get predictions

using all of them.

Predicting Using Snapshots

Prediction using the snapshots accumulated earlier is

implemented in the test_snapshot_model function. This

function takes the following parameters:

Model: An original PyTorch model.

weights: All the snapshots with different weights.

num_last_model: the number of last models to be used for

the prediction.

test_iter: Test data iterator.

model_param: Parameters as required by the model while

loading it.

Below given is the function that implement above given steps:

def test_snapshot_model(Model, weights, num_last_model,

test_iter, model_param):

parsing model parameters

embed_num = model_param[“embed_num”]

embed_dim = model_param[“embed_dim”]

class_num = model_param[“class_num”]

kernel_num = model_param[“kernel_num”]

kernel_sizes = model_param[“kernel_sizes”]

dropout = model_param[“dropout”]

static = model_param[“static”]

stride = model_param[“stride”]

Fetching number of last models to be used

index = len(weights) - num_last_model

weights = weights[index:]

initializing all the models with weight of the snapshot

model_list = [Model(embed_num, embed_dim, class_num,

kernel_num, kernel_sizes, dropout, static, stride) for _ in

weights]

initializing all the models with weight of the snapshot

for model, weight in zip(model_list, weights):

model.load_state_dict(weight)

model.to(device)

Predicting from all models and averaging the predictions

for batch in test_iter:

feature, target = batch.review, batch.label

optimizer.zero_grad()

predictions = cnn(feature.to(device))

output_list = [cnn(feature.to(device)).detach().numpy() for

model in model_list]

output_list = torch.Tensor(np.array(output_list))

output = torch.mean(output_list, 0).squeeze()

test_loss = criterion(output.float(), target.float()).data[0]

acc = binary_accuracy(predictions.type(torch.FloatTensor),

target.type(torch.FloatTensor))

metrices = {“Accuracy”:acc.item()*100,”Test_Loss” :

test_loss.item()}

return metrices

The function can be evoked as follows:

model_param = {

“embed_num” : embed_num,

“embed_dim” : embed_dim,

“class_num” : class_num,

“kernel_num” : kernel_num,

“kernel_sizes” : kernel_sizes,

“dropout” : dropout,

“static” : static,

“stride” : stride

}

metrices = test_snapshot_model(CNN_Text,snapshots,

10,test_iter, model_param)

print(metrices)

Using a snapshot ensemble, the accuracy was found to be

75.8%, and the minimum binary cross-entropy loss was found

to be 1.35. The following diagram illustrates the change in the

loss as the cycle progresses:

Figure 8.5: Decrease in the learning rate over various epoch with

multiple learning rate cycles, Snapshot ensemble is generally

applied to models with millions of parameters.

I have applied it to a smaller model for illustration purposes.

When is applied to a bigger model, it causes fluctuation in

the loss of the learning rate changes.

The entire training code with supporting function is given at:

Ch8/using_word_level_ann_with_snapshot.ipynb

Compare it with the model without a snapshot ensemble

applied and determine the difference.

Plot a curve where you consider the increasing number of the

snapshot for testing and note the change in loss and

accuracy on test data.

Use a snapshot ensemble method for a complex model like

deep convolution network. Snapshot ensembles: train 1, get m

for free: https://arxiv.Org/pdf/1704.00109.pdf

Getting to Know Siamese Networks

Siamese networks are gaining popularity in daily usage, and

these networks have wide applications. A Siamese network is

an architecture that can be used to rain a model to compare

two things. These networks are presently used in the

following applications:

Signature verification

Apple photo ID

Comparing text with paraphrasing

Comparing two texts to detect, neutralize, contradict, and

enlighten sentences in the SNLI dataset.

DeepFace: Facial recognition system created by research uses

a Siamese network

In the upcoming sections, we will learn how to neatly

implement the Siamese network with PyTorch and apply it to

text comparison-related tasks.

Siamese network architecture has two sister networks

connected by the common stem, as shown in the following

figure:

Figure 8.6: A schematic structure of the Siamese network.

It always has two sister networks connected to a common

stem. Some of the custom loss functions used to train this

kind of networks are mentioned in the description.

It is important to note that the two arms of the network

must have similar architecture, and they must share the

weights. The Siamese network can have various types of

layers in the two arms. For example:

Dense layers to process numerical data.

Convolution layer to compare two images.

Recurrent layers to compare two sentences.

A combination of convolution and recurrent layers to compare

two signals. These signals can be anything like video or audio

streams.

Usually, the Siamese network is used to calculate the binary

classification, so it can be trained using the binary cross-

entropy loss function. Another cross-function used in the

famous paper of style transfer is triplet loss. Contrastive loss

can be used as one of the alternatives in the Siamese

networks. The conservative loss can be defined as follows:

Here, is the Euclidean distance between the input of two

arms, ma is the margin, and X1 and X2 are the labels. Y is

the label, and it can be either 0 or 1. If the input is from

the same class, the value of y is otherwise it’s 0. Margin is

something similar to the threshold. If given two dissimilar

inputs, their distance should be lesser than the margin; else,

loss will be calculated. Similarly, if two inputs are similar, the

distance should be greater than the margin, or else loss will

be incurred.

The contrastive divergence loss can be implemented as

follows:

loss_contrastive = torch.mean((1-

label)*torch.pow(euclidean_distance, 2) +

(label)*torch.pow(torch.clamp(self.margin-euclidean_distance,

min=0.0), 2))

Triplet loss can be used with the Siamese network as one of

the alternatives.

Dataset Description

To demonstrate the effectiveness of the Siamese network in

comparing two texts, we will use a small dataset present at

This dataset was acquired from the Google dataset search,

and it is a text similarity dataset available under Database

content license Some of the rows from the dataset are given

as follows. The dataset is about comparing similar ticker

description A stock ticker is a report of the price for certain

securities, updated continuously throughout the trading

session by the various stock exchanges. The same_security

column is used as the label. The goal of our Siamese

network to take text x and y and predict whether they are

similar.

similar. similar.

similar.

similar.

similar.

similar.

similar.

similar.

Table 8.1

Loading and Pre-processing Data

The Torchtext subclass data. Iterator.splits are used for loading

the data, and glove 300-dimensional glove embedding is used

as the pre-trained embedding. A similar code snippet of

torchtext will be used to get train and test iterators:

defining data fields

TEXT1 = data.Field(sequential=True, preprocessing=tokenize,

use_vocab = True,batch_first=True)

LABEL = data.Field(is_target=True,use_vocab = False,

sequential=False, preprocessing = to_categorical)

fields = [(None, None), (‘description_x’, TEXT1),(‘description_y’,

TEXT1), (None, None),(None, None), (‘same_security’, LABEL)]

constructing tabular dataset

train_data, test_data = data.TabularDataset.splits(

path = ‘data/text_simillarity’,

train = ‘train.csv’,

test = ‘test.csv’,

format = ‘csv’,

skip_header=True,

fields = fields)

train_iter, test_iter = data.Iterator.splits((train_data, test_data),

sort_key=lambda x: len(x.description_x),batch_sizes=

(config.batch_size,config.batch_size), device=device)

Constructing a Sister Network

Here, we have taken LSTM units in the sister network for text

processing. Each sister network is taken as an input shape of

[batch_size, After the application of embeddings, this shape

changes to [batch_size, input_length, The output of the

embeddings is given to the LSTM unit. The hidden shape of

the LSTM is passed to the dense layer to generate any

arbitrary output size. In our case, the sister network outputs

[batch_size, Both the sister networks generate such output:

class Piller(nn.Module):

def __init__(self, config : Config, vocab_size):

super(Piller, self).__init__()

self.config = config

self.embed = nn.Embedding(vocab_size,

embedding_dim=config.embed_dim)

self.lstm1 = nn.LSTM(config.embed_dim, config.hidden_size,

batch_first=True)

.dense = nn.Linear(self.config.input_size *

self.config.embed_dim,self.config.piller_out_class)

self.init_hidden()

def forward(self,input):

embed_out = self.embed(input)

lstm_out, (self.h0, self.c0) = self.lstm1(embed_out, (self.h0,

self.c0))

dense_out =

self.dense(lstm_out.contiguous().view(self.config.batch_size, -1))

return torch.softmax(dense_out, 1)

def init_hidden(self):

bidiractional_state = (1 if self.config.bidirectional==False else 2)

self.h0 =

Variable(torch.Tensor(np.random.rand(self.config.n_layers *

bidiractional_state, self.config.batch_size,

self.config.hidden_size)))

self.c0 =

Variable(torch.Tensor(np.random.rand(self.config.n_layers *

bidiractional_state, self.config.batch_size,

self.config.hidden_size)))

The Stem

The stem is the network where both the sister networks

converge, and eventually, a fully connected layer is applied

before making a comparison by classification:

class Stem(nn.Module):

def __init__(self, config):

super(Stem, self).__init__()

self.config = config

self.dense1 = nn.Linear(config.piller_out_class*2,

config.piller_out_class)

self.dense2 = nn.Linear(config.piller_out_class,

config.num_class)

def forward(self, input):

stem_dense1 = self.dense1(input)

stem_dense2 = self.dense2(stem_dense1)

return stem_dense2

This network was trained using Mean Squared Error as the

loss function and SGD as the optimizer. The decrease in

training loss and increase in training accuracy as observed

with Tensorboard are given here:

Figure 8.7: Convergence of the Siamese architecture on the text

comparison-related task.

The shown result i on the train data, but the code has

commented block to test the accuracy of the test data as

well; check it yourself. Siamese network implementation, as

discussed earlier, is provided at

Alternatively, the Stanford Natural Language Inference dataset

can be used. SNLI has 570k paired manually curated

sentences with the labels entailment, contradiction, and

neutral. The Natural Language Inference task is also known as

Textual Entailment The SNLI dataset U-net is another

revolutionary architecture; it was used for biomedical image

segmentation. This model is unique as it has convolution

layers connected by a skip connection between two arms.

Each arm has four convolution layers that gradually compress

the given image and then decompress it to bring it to the

original shape but with segmentation maps.

Refer to the following links for more details:

Signature verification using a time-delay neural network:

http://papers.nips.cc/paper/769-signature-verification-using-a-siamese-

time-delay-neural-network.pdf

Dimensionality reduction by learning an invariant mapping:

http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf

U-Net: Convolutional networks for biomedical image

segmentation: https://lmb.informatik.uni-

freiburg.de/people/ronneber/u-net/

Application of RCNN

RCNN can have two meanings: Recurrent Convolutional

Neural Network and Regional Convolutional Neural In this

chapter, we are referring to Recurrent Convolutional Neural

Network, which is also known as Recurrent Convolutional

Network Two-dimensional CNN helps give state-of-the-art

performance in image recognition-related tasks and are very

good at preserving spatial information. One problem with

CNN is that they are stateless, so the prediction on the

current frame has no relationship with the previous frame. On

the other hand, RNN is good at understanding the temporal

sequence and has demonstrated state-of-the-art results in the

speech recognition task. If one wants to process a video

stream with a temporal relationship between a two-time-frame,

we require a combination of these two. Here, temporal

relationship means there exists a connection between a

current slice of image and the neighboring images. To

process data with a temporal relationship, one would require

a network to have both convolution and recurrent

components. In 2015, RCN was introduced by et to learn

video representation.

In this section, we will understand how a convolution unit

with recurrent components is developed. The concept is

relatively simple to implement, and we take a simple GRU

unit. The following equations can mathematically represent a

GRU unit:

= + + = + +

= + (1 – + +

Here, is the update gate at time is the reset gate, and is the

updated hidden state at time When a convolution operation is

applied to the above gate, dot products at various places in

the above equation are replaced by convolution operations:

= + +

= + +

= + – + +

Here, * represent the convolution operation. The effective

implementation of convolutional GRU is given here:

reset_gate = nn.Conv2d(input_size + hidden_size, hidden_size,

kernel_size, padding=padding)

update_gate = nn.Conv2d(input_size + hidden_size,

hidden_size, kernel_size, padding=padding)

out_gate = nn.Conv2d(input_size + hidden_size, hidden_size,

kernel_size, padding=padding)

Each time, the current input_ and prev_state are passed to

the update, reset gate, and output gate. The new state value

is calculated from the values of these states. The model

outputs the new state value:

stacked_inputs = torch.cat([input_, prev_state], dim=1)

update = F.sigmoid(self.update_gate(stacked_inputs))

reset = F.sigmoid(self.reset_gate(stacked_inputs))

out_inputs = F.tanh(self.out_gate(torch.cat([input_, prev_state *

reset], dim=1)))

new_state = prev_state * (1 - update) + out_inputs * update

In the next section, we will see how to utilize these layers to

model the data with temporal nature.

Preparing the Dataset

In real-life applications, RCNN architecture is applied to the

video stream processing as done by Nitish Srivastava et al.,

in a research paper named Learning of Video Representations

using This seems amazing, but it requires a great amount of

computing power to process video. The previous model for

video representation was trained on Nvidia Titan GPU for

300. To learn the concept easily, we require less data that

allows experimentation. For this purpose, we will first prepare

the dataset and then apply CNN and RCNN on it. The

dataset consists of a frame and a box that moved to and fro

in the frame. The task is to predict the next position of the

box, as shown in yellow. This box will be moving to and fro

in the shown frame:

Why Is It Difficult?

Based on the current position of the box, it can have two

positions: in the right of the box and in the left of the box,

as shown in the following diagram. CNN considers the

current frame without any previous information about the

direction in which the box was moving. In contrast, the

RCNN predicts the next position of the box by taking input

from many previous frames:

Figure 8.8: Showing probable prediction looking at previous two

frames.

How Can It Be Solved?

CNN, combined with the temporal memory, can solve this

problem. This combination is commonly known as Recurrent-

CNN architecture:

Figure 8.9: Showing how RCNN can help to mitigate problem

by introducing context.

You can see the final output of the data as a GIF file format

at To get an idea about how the synthetic dataset looks, you

can look at the interactive ipython notebook at

Predicting Using CNN

Let’s see what happens when CNN is used for predicting the

position of the box given the current position. Our CNN

model looks like the following:

class CNN(nn.Module):

def __init__(self):

super(CNN, self).__init__()

self.conv1D = nn.Conv1d(in_channels=5,out_channels=2,

kernel_size =3)

self.dense1 = nn.Linear(in_features=2*48,out_features=10)

self.dense2 = nn.Linear(in_features=10,out_features=1)

def forward(self, input):

conv_out = self.conv1D(input)

conv_out_reshape = conv_out.view(-1,48*2)

dense1_out = self.dense1(conv_out_reshape)

dense2_out = self.dense2(dense1_out)

return dense2_out

It has one Conv1D layer, followed by dense layers. The input

to this network will be a 2D array with the position of the

box in the frame. The expected output will be the next

position of the box in the frame. The entire experiment, with

pre-processing, model construction, and loss calculation, is

given at The final loss with this model was 17.48. The main

problem with CNN is that it is not made for keeping

temporal or sequential information. So, the model is unable

to predict the direction in which the box is moving. As a

result, error occurs in the prediction.

Predicting Using RCNN

A similar experiment was carried out using RCNN. The layers

in the model are arranged as discussed in the previous

section:

class ConvGRUCell(nn.Module):

“””

Generate a convolutional GRU cell

“””

def __init__(self, input_size, hidden_size, kernel_size):

super().__init__()

padding = kernel_size // 2

self.input_size = input_size

self.hidden_size = hidden_size

self.reset_gate = nn.Conv2d(input_size + hidden_size,

hidden_size, kernel_size, padding=padding)

self.update_gate = nn.Conv2d(input_size + hidden_size,

hidden_size, kernel_size, padding=padding)

self.out_gate = nn.Conv2d(input_size + hidden_size,

hidden_size, kernel_size, padding=padding)

init.orthogonal(self.reset_gate.weight)

.orthogonal(self.update_gate.weight)

init.orthogonal(self.out_gate.weight)

init.constant(self.reset_gate.bias, 0.)

init.constant(self.update_gate.bias, 0.)

init.constant(self.out_gate.bias, 0.)

def forward(self, input_, prev_state):

get batch and spatial sizes

batch_size = input_.data.size()[0]

spatial_size = input_.data.size()[2:]

generate empty prev_state, if None is provided

if prev_state is None:

state_size = [batch_size, self.hidden_size] + list(spatial_size)

if torch.cuda.is_available():

prev_state = Variable(torch.zeros(state_size)).cuda()

else:

prev_state = Variable(torch.zeros(state_size))

data size is [batch, channel, height, width]

stacked_inputs = torch.cat([input_, prev_state], dim=1)

update = F.sigmoid(self.update_gate(stacked_inputs))

reset = F.sigmoid(self.reset_gate(stacked_inputs))

out_inputs = F.tanh(self.out_gate(torch.cat([input_, prev_state *

reset], dim=1)))

new_state = prev_state * (1 - update) + out_inputs * update

return new_state

This model takes the previous frame with box location and

current frame with box location as input and provides the

next box location. The ConvGRUCell class only provides the

new state, and everything else is transformed in the ConvGRU

The ConvGRU class takes this new state, applies a few dense

layers, and provides the final output, that is, the location of

the yellow box. Applying RCNN to the preceding data reduces

the total loss to 9.63. You can experiment with the Ipython

notebook at Ch8/RCNN/testing_rcnn_using_synthetic_data.ipynb

to get more solutions to this problem.

A research paper Recurrent convolutional neural networks for

text classification wherein RCNN applied to the text

classification, and state of the art result is achieved. CNN is

good at understanding character-level similarity and is used

for state-of-the-art models like RCNN could be the next bigger

domain to be explored to get state-of-the-art results.

Take a look at the following links for more information:

Exploring the limits of language modeling:

https://arxiv.org/pdf/1602.02410.pdf

Recurrent convolutional neural networks for text classification:

https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745

Unsupervised learning of video representations using LSTMS:

https://arxiv.org/abs/1502.04681

Understanding CTC Loss

CTC loss or the connectionist temporal classification is an

important milestone in the area of speech recognition and

optical character recognition CTC is a loss function specifically

designed to help discretize components from the sequence.

Jurgen Schmidhuber (the inventor of the LSTM) and

coworkers originally proposed CTC loss.

The Simplest Choice

We will take an example to demonstrate the necessity of CTC

loss. Let’s consider handwriting recognition as the task. The

easiest choice would be to apply RNN and to the equal size

slices taken from the image and apply CNN to the pixel-level

features. To train such a network, one would require the loss

function to be such that it outputs the character score for

each element of the written word and represents it in the

form of the matrix. Such a loss function should be

differentiable to allow gradient-based optimizers to train such

networks. Such loss function should be able to the decode

contained text. The generalized pipeline is as shown here:

Figure 8.10: The placement and importance of CTC loss in the

pipeline.

Importance of the CTC loss The OCR and speech recognition

tasks will always be performed as supervised learning. If we

don’t use CTC loss, we would require two things to apply the

supervised learning paradigm:

A horizontal location of each image

The corresponding character for each slice must be tagged

However, annotating data like this is extremely time-

consuming. Plus, after data is annotated like this, one needs

to deal with merging character that is spanning in multiple

slices. For example, W is wider than a in the preceding

example. According to slicing, the translation should be Taking

another example of the word man, translation performed in

the annotated way would yield CTC loss solves both the

problems as:

We only need to input the CTC loss to the image and the

output text as label, and the rest will be taken care of by

CTC loss.

No further processing of text, like merging, is needed.

How Does CTC Work?

We only feed the output of the previous layers’ neural

network layers to the CTC loss, along with the ground truth

labels. CTC loss figures out how to map the text to

characters and provide non-repetitive output. We will see how

CTC loss works. The one issue was with encoding repeated

characters, as we discussed earlier. A sign space character is

used to designate the space between the characters in the

word. According to the out translation for the word, man will

be changed to --mmm-a-nn and will be reduced to man by

combining the duplicate characters. This character encoding

has side effects. Let’s say we have the word woo! It will be

converted to We will see how this will be taken care of.

Loss Calculation

For the word I have shown a simple matrix to trace one

character at each time step. The following figure illustrates

the tracing of character with different probabilities of that

character being present. The probability for each combination

is calculated, and in the following diagram, the max

probability comes out to be ---, which corresponds to --- as

the output sequence. All parameters were randomly initialized

at the beginning of the training. The loss of output --- with

the ground truth man is calculated. This loss is simply the

negative logarithm of the probability. It is backpropagated, and

the gradients are backpropagated for parameter updates.

Understanding Decoding

When we train the model as described earlier, we can use it

for inference on an unknown image. As shown earlier, the

algorithm can have a single path, and that’s the one with the

highest probability associated. Still, to find out such path, the

algorithm needs to traverse through all the permutation

combinations and check through the best there can be -- the

number of paths. For the preceding example, the equation

says there are -- paths. In practice, the sequence will not be

much a simpler one, and the combination explodes and

become computationally expensive as the length increases.

Figure 8.11: Schematic diagram showing how decoding could take

place. The circles represent each character and arrows represent

their tendency to select another character.

We can apply a dynamic algorithm to this problem to simplify

the calculation. We will see how dynamic programming solves

the problem in the next section in finding the best path.

Another way to solve this problem in the least possible

computational cost is to choose the best path decoding The

best path decoding algorithm selects the highest probability at

each timestep and moves to the next time step. This way, it

selects the path with all characters having the highest

probability for the given time step. After this, the algorithm

combines duplicates and removes the character of the space

to provide the final output. By property, CTC loss is

conditionally independent. This is, in fact, the shortcoming of

the CTC loss algorithm. It assumes each output to be

conditionally independent of the previous outputs. It is bad

for many sequences to sequence problems like voice

recognition and optical character recognition.

CTC loss calculation requires an external module, like and The

detailed use of both these module is discussed under the

following headings:

Installation

Usage

Even with solid understanding of CTC loss, its implementation

is very difficult. The algorithm has several measures to deal

with edge cases, and faster implementation should be written

in low-level programming languages. Due to this, we will

simply use a PyTorch function to demonstrate the use of CTC

loss. PyTorch implementation for the CTC loss is provided as

a package

Installation

CTC-warp is compatible with torch version 0.4.

WARP_CTC_PATH and should be set to the location of a built

WarpCTC This defaults so you can build WarpCTC from within

a new warp-ctc clone, as follows:

cd warp-ctc

mkdir build; cd build

cmake ..

make

Now install the bindings:

cd PyTorch_binding python setup.py install

Usage

CTC loss can be used as in the example:

import torch

from warpctc_PyTorch import CTCLoss

ctc_loss = CTCLoss()

Taking two sequences:

probs = torch.FloatTensor([[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1,

0.6, 0.1, 0.1]]]).transpose(0, 1).contiguous()

Creating dummy labels and storing the length of the label

and the required probability to be received from the CTC

module:

label_sizes = torch.IntTensor([2])

probs_sizes = torch.IntTensor([2])

Calculating CTC loss:

probs.requires_grad_(True) # tells autograd to compute

gradients for probs

cost = ctc_loss(probs, labels, probs_sizes, label_sizes)

cost.backward()

As shown above, CTC loss can be easily incorporated into an

existing pipeline.

Another Baidu package named is compatible with python This

package can be installed using pip install

Take a look at the following links for more information:

Connectionist temporal Labeling unsegmented sequence data

with recurrent neural networks:

https://www.cs.toronto.edu/~graves/icml_2006.pdf

Sequence Modeling with https://distill.pub/2017/ctc/

Captioning Image

Image captioning is the process of describing what is

happening in an image. An example of the image and its

captions is given as follows:

Figure 8.12: An example image.

Source: https://www.pexels.com/photo/girl-holding-balloons-1140713/

This image can be captioned as:

A girl holding balloons.

A white girl holding three balloons.

A white girl holding balloons at the lake side.

Since CNN is not good at keeping temporal information, the

image captioning task can be divided into two models; image-

based that takes features from the image, and a language

model that takes the feature from the previous model and

generates the description, like the language translation task.

We have been using RNN and CNN separately in many tasks,

namely, classification, translation, and embedding generation.

In this chapter, we will use CNN to input the image, and the

learned information will be passed down to the LSTM. Here,

RNN acts as the generative model and will help generate

appropriate descriptions for the image. We will train our

machine in a supervised manner. Here, CNN is used as the

encoder, and RNN is used as the decoder. The following

schematic diagram illustrates how the task will be

accomplished. It is the simplest model with a few CNN

layers, followed by linear/dense layers. The output of the

dense layer is passed to the RNN units. The RNN unit is fed

with the start of sequence token, and it generates the next

word. The generated word at time step t is fed to RNN at

t+1 time-step, and a new word is generated. This continues

until the End of sequence token is reached. Take a look at

the following figure:

Figure 8.13: A model architecture for image captioning.

This seems to be simple isn’t, it? It is very simple to make

the image captioning model; but the difficult part is dealing

with training data. To train this task, we will use the 13 GB

MS-COCO data. By getting to know the data-size, you must

have realized that this model requires a high-end machine

with GPU to train. Due to the data size, one cannot train

this model on the Google lab. I have trained the model on

my PC that has 32 GB RAM and Nvidia 1080 Ti with 11GB

VRAM attached. You can use AWS or Google Cloud. Coding

and converging this model is the next level of experience and

will surely boost your confidence in building a model with

PyTorch.

The preceding model is a basic one for the task. Many

researchers have come up with advanced models by modifying

this basic model to optimize the output and convergence.

Downloading the Data

To demonstrate the concept of image captioning, we will use

the Flickr8k dataset released by Flickr. This dataset has one

image and five captions describing it in different ways. You

can download this dataset from As an alternative academic,

torrent can be used to download the dataset for non-

commercial purposes. The Flickr8k dataset can be downloaded

from academic torrents by clicking on this link:

http://academictorrents.com/details/9dea07ba660a722ae1008c4c8afd

d303b6f6e53b

Implementation

Image Image augmentation is often used for better

generalization. Image augmentation means increasing images

by applying edits and increasing the training data. Here, we

will augment the images using torchvision. Transform

function. We will apply effects like Random crop, Random

Horizontal flip, and normalizing image, as follows:

transform_train = transforms.Compose([

transforms.RandomCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224,

0.225))])

transform_test = transforms.Compose([

transforms.RandomCrop(224),

transforms.ToTensor(),

transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224,

0.225))])

Encoder Module

As discussed in the schematic diagram of the model

architecture for image captioning, the encoder is made up of

convolution layers. The encoder takes an image and converts

it to the image context vector. Generally, a pre-trained model

is used to convert an image into a context vector. This

trained model can be any network like and A ResNet model

is loaded, and the last layer of such a pre-trained network is

removed so that it gives an n-dimensional vector for any

image. This n-dimensional vector has information related to

the images and is later consumed by the decoder module:

class EncoderCNN(nn.Module):

def __init__(self, embed_size):

“””Load the pretrained ResNet-50 and replace top fc layer.”””

super(EncoderCNN, self).__init__()

resnet = models.resnet50(pretrained=True)

modules = list(resnet.children())[:-1] # delete the last fc layer.

self.resnet = nn.Sequential(*modules)

self.linear = nn.Linear(resnet.fc.in_features, embed_size)

self.bn = nn.BatchNorm1d(embed_size, momentum=0.01)

def forward(self, images):

“””Extract feature vectors from input images.”””

with torch.no_grad():

features = self.resnet(images)

features = features.reshape(features.size(0), -1)

features = self.bn(self.linear(features))

return features

Decoder Module

The decoder module is simple and is similar to the decoder

module we used for language translation in Chapter 4, Using

RNN for It has one LSTM layer, followed by a linear

transformation. The generation takes place using teacher

forcing:

class DecoderRNN(nn.Module):

def __init__(self, embed_size, hidden_size, vocab_size,

num_layers, max_seq_length=20):

“””Set the hyper-parameters and build the layers.”””

super(DecoderRNN, self).__init__()

self.embed = nn.Embedding(vocab_size, embed_size)

self.lstm = nn.LSTM(embed_size, hidden_size, num_layers,

batch_first=True)

self.linear = nn.Linear(hidden_size, vocab_size)

self.max_seg_length = max_seq_length

def forward(self, features, captions, lengths):

“””Decode image feature vectors and generates captions.”””

embeddings = self.embed(captions)

embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)

packed = pack_padded_sequence(embeddings, lengths,

batch_first=True)

hiddens, _ = self.lstm(packed)

outputs = self.linear(hiddens[0])

return outputs

def sample(self, features, states=None):

“””Generate captions for given image features using greedy

search.”””

sampled_ids = []

inputs = features.unsqueeze(1)

for i in range(self.max_seg_length):

hiddens, states = self.lstm(inputs, states) # hiddens:

(batch_size, 1, hidden_size)

outputs = self.linear(hiddens.squeeze(1)) # outputs:

(batch_size, vocab_size)

_, predicted = outputs.max(1) # predicted: (batch_size)

sampled_ids.append(predicted)

inputs = self.embed(predicted) # inputs: (batch_size,

embed_size)

inputs = inputs.unsqueeze(1) # inputs: (batch_size, 1,

embed_size)

sampled_ids = torch.stack(sampled_ids, 1) # sampled_ids:

(batch_size, max_seq_length)

return sampled_ids

Appropriate loss function and We are using a cross-entropy

loss function. Ideally, I need to take care of the padding in

batch by not calculating the loss for pad tokens, but I want

to keep this implementation simple, so I’m using nn.

CrossEntropyLoss() from

criterion = nn.CrossEntropyLoss()

We are using Adam optimizer with a learning rate of 0.0001.

Training has the following steps:

Sorting is applied to captions and images according to the

caption length.

A PyTorch pack_padded_sequence function helps pack variable-

length caption to a max length of any of the captions.

The image is passed to the encoder and getting an image

vector/context vector.

The decoder module takes these features and generates the

caption word by word.

Loss calculation and backpropagation take place.

Below given is the function that implement above given steps:

for epoch in range(epochs):

for i, (images,captions,lengths) in enumerate(train_dataloader):

images = images.to(device)

captions = captions.to(device)

images,captions,lengths=sorting(images,captions,lengths

targets =

pack_padded_sequence(captions,lengths,batch_first=True)[0]

features = encoder(images)

outputs = decoder(features,captions,lengths)

Below given results where the caption is generated by taking

an image. The captions generated are very accurate:

Figure 8.14

The entire code with proper comments is given at You can

run the code and experiment by providing unknown images to

see whether accurate captions are generated.

Beam Search

We have used LSTM-based decoders in language translation.

We know the translation was not great and need measures to

improve it. One of the problems with our technique lies in

the decoding phase. We have always taken the word

generated with the highest probability at each time step and

added to the sequence. This method of taking the best at

each time step is known as a greedy approach. At first, it

may seem that this technique can provide the best

generation, but it doesn’t if you select senescent level score

by multiplying the probabilities of each token. The name

suggests greedy, which means a method that seeks immediate

reward. In contrast, beam search considers rewards over some

time. By taking argmax at each time step over the

probabilities of tokens, we were seeking immediate rewards.

In beam search, the concept is to trace the path that gives

maximum rewards and not just selects the token with

maximum probability each time. Beam search can be

performed using the following function, which takes data in

the form of 2D array and which is the number of different

paths that require high probability. Below given is the function

that implement above given steps:

def beam_search_decoder(data, k):

path =[[list(), 1.0]]

for row in range(len(data)):

selected_path = []

index_score = []

for i in path:

sequence, score = i

for j in range(len(data[row])):

index_score.append([sequence+[j],score * -log(data[row][j])]) #

log to check overflow or underflow

selected_path.append(index_score)

sorted_index_score = sorted(index_score, key= lambda tup :

tup[1])

path = sorted_index_score[:k]

return path

For demonstration purposes, we will take one [10, 10] Numpy

random array as an array for the vocabulary of 10 words and

10-time steps. Each row in this data represents the probability

of the prediction of each word:

data = np.random.rand(10,10)

data = array(data)

decode sequence

result = beam_search_decoder(data, 3)

The result will be something like this for k =

[[7, 7, 3, 4, 1, 1, 1, 6, 3, 7], 1.2111146290953402e-12]

[[7, 7, 7, 4, 1, 1, 1, 6, 3, 7], 1.2455253954806299e-12]

[[1, 7, 3, 4, 1, 1, 1, 6, 3, 7], 1.4476142406986034e-12]

Each result has a sequence indicating the location of the

tokens and the resultant score. The sequences so generated

are sorted in descending order of score. If such a path is

plotted using Matplotlib, three of the paths are somewhat

different and give varying sequences. This deviation will

increase when we have a sufficiently large vocabulary size and

provide different sentences similar in meaning but written

differently.

Figure 8.15: Beam search illustrated; it takes different paths that

jointly maximize the probability.

Possible path with maximum probability:

[[7, 7, 3, 4, 1, 1, 1, 6, 3, 7], 1.2111146290953402e-12]

[[7, 7, 7, 4, 1, 1, 1, 6, 3, 7], 1.2455253954806299e-12]

[[1, 7, 3, 4, 1, 1, 1, 6, 3, 7], 1.4476142406986034e-12]

It takes different paths that jointly maximize the probability.

Path tracing for the first path is displayed in the preceding

diagram.

Variants

If you don’t have enough computing power at your disposal,

you can try to train the preceding model on smaller datasets.

You can use the following ones:

The name suggests greedy, which means a method that seeks

immediate reward, and, in contrast, beam search considers

rewards over time. By taking argmax at each time step over

probabilities of tokens, we were seeking immediate rewards.

The greed search can be demonstrated by the following given

an example. Pascal sentence dataset:

http://vision.cs.uiuc.edu/pascal-sentences/

Flickr 30k image caption corpus:

http://shannon.cs.illinois.edu/DenotationGraph/

Bringing semantics into focus using visual abstraction learning

the visual interpretation of sentences:

https://vision.ece.vt.edu/clipart/

For other sources, you can refer to

http://www.cs.toronto.edu/~fidler/slides/2017/CSC2539/Kaustav_slides

.pdf by Kaustav A student at the University of

The preceding model is good enough to provide an insight

into all the components required for the image captioning

model. Here onward, you can implement any of the following

models. These models are easy to implement and converge in

a relatively shorter duration to provide better captions:

Rich image captioning in the https://www.microsoft.com/en-

us/research/wp-content/uploads/2016/06/ImageCaptionInWild-1.pdf

A neural image caption generator:

https://arxiv.org/pdf/1411.4555.pdf

Conclusion

With this chapter, we moved a little ahead with complex

networks. We covered techniques like sentence piece, which is

the token encoding technique used with new networks like

Bert and Transformers. It greatly simplifies and compresses

the vocabulary size. We also saw techniques like random

multimodal learning and snapshot ensemble. Snapshot

ensemble is a technique that provides n models per training

run. After training, such models can be used parallely for

better accuracy. Siamese networks are versatile and can be

used for comparing images, text, or videos, depending on the

component layers. Lastly, we saw a hybrid where CNNs are

used recurrently and have unique properties. Until now, we

have been using known loss functions like entropy and mean

squared loss in all the NLP tasks.

The next chapter will walk you through Generative

CHAPTER 9

Understanding Generative Networks

This chapter covers brilliant inventions like the Generative

Adversarial Network (GAN), by Ian Goodfellow. Ian Goodfellow

currently works for Apple Inc and is a director of machine

learning in the Special Projects Group. This chapter will cover

the theoretical and practical aspects of the GAN, starting with

unsupervised pretraining and how it can help gain good

accuracy with less supervised data. This chapter will cover

how to apply GAN on MNIST data and generate real-like

data. GAN also helps in data augmentation. After gaining

practical knowledge of the GAN, we will look at all its

theoretical aspects. The last recipe in this chapter will cover a

variation of GAN, i.e., Conditional GAN or CGAN. CGAN are

widely used for additional data generation. GAN can be used

to generate super-resolution images.

Structure

This chapter will cover the following recipes:

Understanding unsupervised pretraining

The GAN architecture

Implementing GAN for MNIST

Understanding the theory behind GAN

Generating image from the description

Objective

Understanding the fascinating world of Ian Goodfellow.

An understanding basic concepts of Generative Adversarial

Network such as Nash Equilibrium, KL-Divergence, KL-

Divergence, JS-Divergence, and KullbackLeibler Divergence.

Tips and tricks to solve the problem of an unstable gradient

in GAN.

Understanding and coding different types of GAN like

VariationalAutoencoder and learning the application of GAN in

generating images from text.

Technical Requirements

Codes for this chapter are in the Ch9, Understanding

Generative Networksat GitHub repository To understand this

chapter, you must have basic knowledge about the following

Python packages:

Torch

TorchVision

Matplotlib

NumPy

TensorBoardX

You can install these requirements by installing all the

packages listed in requirements.txt by simply issuing pip

install -r

Understanding Unsupervised Pretraining

Today, networks are trained with a huge amount of data in a

supervised manner to achieve state-of-the-art result. For

example, the image net dataset has 1M images for 1000

classes, manually labeled by humans. Labeling such big

datasets can take a significant amount of time, which cannot

be the optimal strategy when for the long-term goals. Imagine

the amount of manual effort required to create the dataset

with 1M classes and labeling each video frame, each video

with 100 thousand frames. This is the reason we would

require some techniques to decrease manual effort. In this

recipe, we will explore the basic building blocks of the GAN

to pre-train the network so that it can produce state-of-the-art

results with smaller supervised corpus.

GAN’s main goal is to train the encoder in an unsupervised

manner so that it can be used in supervised pretraining. The

aim of achieving a state-of-the-art result is very similar to the

one we have seen previously by using embeddings. The

difference being the variation of the concept behind the

training. Typically, GAN has two blocks: a Generator and a

discriminator. Let me give you an example to provide a better

picture of the GAN. The GAN works by game theory,

specifically, a min-max game.

Assume that a fake wine shop is competing with a branded

one, and every time it goes for customs clearance, the wine

inspector identifies it to be fake and rejects it. The wine shop

gets more revenue if the wine made is so close to real that

it cannot be identified by the inspector and goes to market.

The inspector gets an incentive if they can identify real wine

correctly and reject the fake wine. With time, the fake wine

shop becomes much more experienced and makes close-to-

real-wine samples. Meanwhile, the inspector also gains

experienced about how to identify fake samples. Now, the fake

winery must make wine as close as possible to the real one,

and the inspector’s job is to gather enough experience to

ensure that no fake sample passes the test. To generate

samples as close to the real one as possible, the wine

requires all the ingredients in the correct quantities. The

inspector’s job is to give continuous feedback by rejecting the

wrong and accepting the correct samples. In GAN, the

generator is equivalent to the fake wine shop, and the

discriminator is equivalent to the inspector. In the upcoming

section, we will explore the overall architecture of the GAN.

GAN Components

Let’s understand the various components of GAN.

The Generator

The generator’s function is to generate an image sample

using a random vector with a normal or uniform distribution.

With z as the input, we create an image x using a generator

Mathematically, this can be given as x = G(z). The X can be

anything; it can be an actress’s face, a coffee mug, or any

digit of the MNIST dataset. The generator initially generated

random noise, but over time, it gets feedback from the

discriminator and generates what is required. Here, the

generator is the magical function made up of the deep neural

network, as shown in the following image:

Figure 9.1: The generator network accepts any noisy input (latent

random variable) and provides an image at the output.

The generator can be made up of the feedforward network,

CNN, or a combination of both. Having a generator network

with RNN unit is rare, and research is being conducted for

applying GAN to the language/speech data.

The Discriminator

The discriminator is a similar network, but it shrinks the

image size gradually and categorizes it into any of the two

classes. The discriminator’s role is to classify the image as

fake or real. It may look like this:

Figure 9.2: Discriminator network having CNN layers.

Discriminator takes either real or fake images and identifies

them. The discriminator D takes an image x (real/ fake) and

outputs a probability indicating whether the image is real or

fake, respectively. Mathematically, this can be shown as: ŷ =

Ideally, the probability of the image generated by the

generator provided to the discriminator should be toward

zero, and the probability of the real image provided to the

discriminator should be 1.

The GAN Architecture

The overall architecture has a generator and a discriminator.

Additionally, the architecture has a mechanism to provide real

or fake images to the discriminator and a custom loss

function. We will look at the custom loss function in the

upcoming recipes. The schematic diagram of the network

looks as follows:

Figure 9.3: Showing GAN architecture comprises of the generator

and discriminator.

The generator takes a random vector or latent random

variable and generates an image (this image is referred to as

fake - as it is generated by generator). Real images and fake

images are given to the discriminator, and the discriminator’s

job is to identify them correctly. The generator is trained to

generate images so that the discriminator can be cheated.

The Loss Function

GAN is trained for binary classification, and we usually use

the binary cross-entropy loss very often. For the binary

classification, the generalization of the cross-entropy can be

given as: p log(q) + p log(1 – q).

Similarly, for the discriminator, the loss is given as:

For the generator, the loss is given as:

The overall architecture with the flow of loss to the generator

or discriminator can be given as follows:

Figure 9.4: Loss back-propagation to the discriminator and

generator after a forward pass.

In the next recipe, we will see how to train a very simple

GAN model on the MNIST data.

From the network itself, it is very clear that the generators

have more work than the discriminator. It is always easier to

distinguish the real and fake images in the early stages of

training by the discriminator. As a result, the discriminator is

easily trained, and the discriminator loss quickly decreases to

zero. Consequently, the gradient quickly vanishes at

discriminator and makes the generator’s training impossible.

Also, the image generated by the generator cannot pass the

discriminator, and the loss of the generator gradually

increases. This phenomenon is known as the mode collapse.

We will see how advance architecture is taking care of mode

collapse. Due to this, it is very hard to train the GAN. Also,

GANs are very sensitive to hyperparameters. While we

implement the RNN by tracing the generator loss, we will see

how mode collapse occurs.

Take a look at Generative Adversarial Nets:

Implementing GAN for MNIST

In the previous recipe, we saw various building blocks to

construct the GAN architecture. In this recipe, we will take

the MNIST dataset and design the GAN with a generator and

discriminator. We will also understand how to implement the

loss function and provide fake and true images to the

discriminator.

You might probably know about the MNIST dataset; it is a

dataset for handwritten digits from 0-9 with 60,000 training

and 10, 000 test samples. Usually, GAN has convolutional

layers in the architecture, but we will use only fully-connected

layers in the present demonstration for simplicity.

The following steps illustrate how to generate MNIST using

GAN:

The Each MNIST image is of size 28*28, as we will use fully-

connected layers so that we flatten these images into shape

784.

The The generator looks like as given in the next code block.

The generator takes a random vector of size 100 and has

three fully-connected layers; each subsequently dilates the

input shape and output shape of 784 so that it can form an

image of size (28*28). It is the image generated by the

generator.

The It takes an image of size 784 and gradually shrinks it to

1 by passing it through 3 fully-connected layers. If the output

probability is toward one, the input image is classified as

true, else it is classified as fake.

Training The overall training process has the following steps,

along with the code:

Generating random vector of size 100:

noise = Variable(torch.randn(images.size(0), 100).cuda())

Generating fake images by passing them through a generator

and generating labels with all zeros for these images:

fake_images = generator(noise)

fake_labels = Variable(torch.zeros(images.size(0)).cuda())

Training discriminator using fake images along with labels and

real images along with labels. After training, the discriminator

provides which is a summation of the loss generated by real

images and fake images. This function also provides

real_score and The former indicates the prediction of the

discriminator for images with original labels; ideally, this

output should be near 1. On the other hand, the latter

indicates the prediction of the discriminator for images with

fake labels; ideally, this output should be near 0. Monitoring

real_score and fake_score provides a good idea about the

convergence of the discriminator:

deftrain_discriminator(discriminator, images, real_labels,

fake_images, fake_labels):

discriminator.zero_grad()

outputs = discriminator(images)

real_loss = criterion(outputs, real_labels)

real_score = outputs

outputs = discriminator(fake_images)

fake_loss = criterion(outputs, fake_labels)

fake_score = outputs

d_loss = real_loss + fake_loss

d_loss.backward()

d_optimizer.step()

returnd_loss, real_score, fake_score

The generator generates Then-after, fake images. The label for

these images is all ones (the discriminator should treat all

images as real images for the loss to be 0). These fake

images are passed on to the discriminator, and the output

generated by the discriminator and the original labels are

used for the loss calculation. Based on the images generated

and provided to the discriminator and label predicted by the

discriminator, the generator loss g_loss is calculated:

noise = Variable(torch.randn(images.size(0), 100).cuda())

fake_images = generator(noise)

outputs = discriminator(fake_images)

g_loss = train_generator(generator, outputs, real_labels)

The overall training process is summarized as follows:

for epoch in range(num_epochs):

for n, images in enumerate(train_loader(batch_size=100)):

images = Variable(images.cuda())

real_labels = Variable(torch.ones(images.size(0)).cuda())

Sample from generator

noise = Variable(torch.randn(images.size(0), 100).cuda())

fake_images = generator(noise)

fake_labels = Variable(torch.zeros(images.size(0)).cuda())

Train the discriminator

d_loss, real_score, fake_score = train_discriminator

(discriminator, images, real_labels, fake_images, fake_labels)

Sample again from the generator and get output from

discriminator

noise = Variable(torch.randn(images.size(0), 100).cuda())

fake_images = generator(noise)

outputs = discriminator(fake_images)

Train the generator

g_loss = train_generator(generator, outputs, real_labels)

After training for a few iterations, the following sample is

generated by the generator. Further training could provide

better output.

Figure 9.5: Sample generated by the generator on the MNIST

data.

The overall implementation with supporting functions is given

at

GAN is a new technique, but the interest of developers las

led to many varieties of the GAN evolving within a short

span. These varieties of GAN architecture are developed after

modifying the basic version for particular cases. Here are a

few such variations of the GAN architecture, along with their

applications:

Transfering images from one domain to the other domain

Given pictures of a celebrity, it suggests the merchandise

Creating super-resolution images from low-resolution ones

Text to The image is synthesized according to given text

description (we will discuss this in detail in the next recipe)

Music GANs are used for music generation

The approach of basic GAN is modified a little for any of the

above-mentioned applications. The following list mentions

some of the ways in which modifications can be made in the

GAN architecture to achieve specific goals. Implementing GAN

variation is super easy, and converging them is an art. Some

of the papers that you may implement are given here:

Comparing GAN techniques for image creation and

modification: https://arxiv.org/pdf/1803.09093.pdf

Image-to-image translation with conditional adversarial

networks: https://arxiv.org/pdf/1611.07004.pdf

High-resolution image synthesis and semantic manipulation

with conditional GANs: https://arxiv.org/pdf/1711.11585.pdf

Pixel-level domain transfer: https://arxiv.org/abs/1603.07442

Unpaired image-to-image translation using cycle-consistent

adversarial networks: https://arxiv.org/pdf/1703.10593.pdf

The Understanding Theory behind GAN

We have already explored the basic components of the GAN,

along with its implementation. GANs are based on the game

theory and are very unstable. To train GAN effectively and

converge such networks, you must know some of the basic

concepts that form the base of the GAN.

As mentioned earlier, the GANs are unstable, so there exist

many challenges in training them. Some of these challenges

are listed here:

The model accuracy constantly oscillates, destabilizes but

never converges.

Mode The generator collapses and produces only limited

varieties of samples. As aresult, a false increase in the

performance is noted, but generalization never occurs. Real-life

data are multi-labels (multi-model). For example, MNIST data

has ten modes (0 to 9). Two different GANs generate the

following output. The upper row with one GAN model, where

the generator yield all the classes whereas in the second row,

is synthesizing only a few classes. It is called a model

collapse, where the model shows a low error, but the

generalization is compromised. This type of partial collapse is

common in GAN models:

Figure 9.6: Diagram showing the MNIST sample generated by

two different GAN models.

The upper row generated by the GAN model is without mode

collapse. Another GAN model generates the lower row and it

has mode collapse.

Diminished As we saw earlier, the sample generated by the

generator is given to the discriminator, and the error is

backpropagated. When the discriminator gets too successful, it

always identifies the generated sample as wrong, but as the

discriminator is right, the large error does not propagate back

to the generator. The generator gradient vanishes and learns

nothing, and the imbalance between the generator and

discriminator causes overfitting.

Hyper-Parameter GANs are highly sensitive to

hyperparameters, and when selected wrongly, such a network

never converges. To effectively deal with this instability, it is

advisable to learn some of the principles that affect

convergence in the GANs, and we will do just that in the

next section.

The problem of instability can be understood and elevated

with the help of the following topics:

Nash GAN is based on the game theory—zero-sum non-

cooperative game. It means if one wins, the other must lose.

The generator and discriminator want to minimize each

other’s actions to maximize their own. This is called the

minimax game. To achieve a balance between the generator

and discriminator is called Nash equilibrium:

Both opponents are trying to undermine each other, and the

Nash equilibrium occurs when one player will not change its

action regardless of the other player. To understand the

preceding equation, let’s take a simple equation when players

A and B control the values of x and y; the equation is given

as follows:

Where, player A wants to minimize and player x wants to

maximize the value of xy. In this case, the Nash Equilibrium

is when x=y=0, as it is the state when the opponent’s action

does not change.

Feature As mentioned earlier, the concept of the GAN is

based on the minimax game, where two opponents try to

defeat each other. In this game, the discriminator often gets

too powerful and wins over the generator. To defeat the

discriminator, the generator becomes too greedy. It only

produces a few classes of the image very realistically so that

the discriminator fails to recognize the difference, and it

loses. This is the primary reason behind mode collapse. Mode

collapse is caused because the generator’s goal is to produce

just realistic images and win over the discriminator (just to

get a class right). To help with this, the cost function for the

generator is changed to additionally minimize the statistical

difference between a feature of generated and real images.

Often, we measure L2 difference between the mean of the

feature of generated images and real images. This difference

is calculated in the discriminator just before a few layers of

classification. Mathematically, this is represented as: – where

is the feature vector extracted from the layer just before the

classification layer in the discriminator. Dummy code for the

feature matching GAN is given here:

import torch

from torch import nn

we keep the discriminator as simple as possible

class Discriminator(nn.Module):

def __init__(self, input_size, num_features):

super().__init__()

self.features = nn.Linear(input_size, num_features)

self.classifier = nn.Sequential(

nn.Linear(num_features, 2),

nn.Sigmoid()

)

def forward(self, x):

we return both outputs and the features

feature = self.features(x)

class_ = self.classifier(f)

return class_, feature

criterion

feature_matching_criterion = nn.MSELoss()

fake_samples = G(noise) # generated fake data from

generator

real_samples = … # real data

fake_prediction, fake_features = D(fake_samples)

real_prediction, real_features = D(real_samples)

now, calculating the new objective

loss = feature_matching_criterion(fake_features, real_features)

loss.backward()

As with all the other networks, this does not solve the

problem but stabilizes training.

When mode collapse occurs, the generator synthesizes all

images that are similar in nature. To detect the model

collapse and penalize the generator, the similarity between the

images generated by the generator is determined. When the

model collapse starts, all the image generated by the

discriminator will be similar, so the discriminator can use this

score to penalize the generator if it is cheating by mode

collapsing.

Figure 9.7: Showing the location in the discriminator where some

magic is applied to calculate the intra-batch similarity This intra-

batch similarity is added as an extra feature and passed to the

next layers. It helps the discriminator determine whether mode

collapse has occurred.

Minibatch discrimination is applied in the discriminator. Let’s

say it denotes the vector and size for input in the some of

the layers. Then, this is multiplied to the tensor giving

measure Then, distance is calculated between and all the

other images in the batch, and the negative exponent is

applied as for batch B is calculated as = – ∈ . Such a
difference is calculated between and all other images as: = .

This feature is concatenated with the real output by layer, and

the rest of the discriminator works as it is. It is how the

extra feature created within the discriminator allows it to

identify mode collapse better. Minibatch Discrimination works

better with the feature discrimination.

One-sided label Deep learning algorithm tends to observe

confidence and looks at some of the key features to conclude.

In GAN, this may also happen when the discriminator turns

out to be dependent on some of the features, and the

generator may generate only those features. This can harm

the performance. To check this, we penalize the discriminator

when the prediction of real images goes beyond 0.9 by

setting our target level at 0.9 instead of 1.0:

Use 0.9 instead of 1.0.

real_label = [[0, 0, 0, 0.9, 0, 0, 0, 0, 0, 0]] # Image with

label “3”}

predict_real_image is the logits calculated by

the discriminator for real images.

discriminator_real_loss = tf.nn. BCELoss(labels=p,

logits=predict_real_image)

Historical This intuition comes from the way optimizer

ADADelta works— take the mean of the last n batches and

then update instead of updating the weight for the current

batch. Sometimes, the model oscillates around a point.

According to historic averages, it can act as a damping force

to converge the model. For past epoch iteration, the average

of eight is taken as l2, and the cost is calculated as .

New GAN architecture often has a label attached to it, which

is supposed to stabilize the training. Until now, we were

giving the random vector as the input to generate the desired

output. With Conditional GAN (CGAN), along with the

random vector, the generator is also provided with the label

of the output to be generated. We will discuss these new

techniques in detail in the next recipe.

Some of the other methods to stabilize GAN are mentioned

here, along with the research papers: Avoid Sparse Gradients:

ReLu, MaxPool: The stability of the GAN suffers if you have

sparse gradients. Use LeakyReLu in Generator and

Discriminator. For Down-sampling, use Average pooling,

Conv2d + Stride. For Upsampling use PixelShuffle,

ConvTranspose2D + stride. Refer to the following papers to

learn how these techniques are used:

Real-time single image and video super-resolution using an

efficient sub-pixel convolutional neural network:

https://arxiv.org/abs/1609.05158

Add noise to inputs, decay over time: Add some artificial

noise to discriminator:

Instance noise: A trick for stabilizing GAN training:

https://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-

training/

Improved techniques for training

Generating an Image from the Description

In the previous recipe, we generated MNIST digit by injecting

random noise in the generator. That was a very primitive

architecture with a generator and discriminator. A human can

infer the image generated by the GAN. The output of such a

network is not controllable, as we don’t have any mapping

between the random vector and the generated output. So, the

concept of conditional GAN was proposed. In this recipe, we

will learn how the architecture of the conditional GAN is

developed, taking inspiration from the thought process. This

chapter will also help you understand the process of inventing

better architectures.

Conditional GAN means we can make the network conditional

by applying the new condition to the generator and

discriminator, and the network will generate the same to

decrease the loss. This way, we have control over what a

network should generate. The condition can be a text

description or a class label. In this recipe, we will discuss the

GAN-CLS algorithm. The network diagram for the GAN-CLS is

as follows:

Figure 9.8: GAN-CLS schematic diagram.

The network is based on the Deep Convolution Generative

Adversarial Network The additional portion to condition this

network based on text is added to it. The text features are

encoded by the hybrid character level convolution neural

network. Such encoded text features are added to the

generator input and discriminator output. Along with the

random vector (latent random variable), the text embedding

variable is attached. This will help the generator to generate

the image according to the description. The generated image,

referred to as fake, is passed to the discriminator, which

should recognize it as fake.

If the discriminator recognizes the generated image as fake,

the loss passes back to the generator, and the generator

learns to generate better.

If the discriminator recognizes it as the real image, the

generator is doing well.

This is how the generator is being trained.

The discriminator is also trained to recognize real and fake

images, and to do so, the generator is given three types of

samples. The type of sample and the expected prediction

from the discriminator are mentioned here:

here:

here: here: here: here: here: here: here: here: here: here:

here: here: here: here: here: here: here: here: here: here:

here: here: here: here: here: here: here: here: here: here:

here: here: here: here: here: here:

Table 9.1

A Binary cross-entropy loss is calculated between the expected

and predicted labels backpropagated to the generator and

discriminator. A code snippet for all the vital components of

the GAN-CLS is given in the next section, along with a

detailed explanation.

In GAN-CLS, the overall training paradigm is the same as the

one we used to train GAN for MNIST. The only difference is

in the discriminator and the loss function. In the next

section, we will understand GAN-CLS with the help of the

following sub-topics:

Understanding Such textual features t are appended to the

random noise z to be added to the generator network. It

ensures that the network is preconditioned on what we want

to generate. As given in the network, the self.projection

variable is the small sequential block. The network architecture

of the generator in GAN-CLS using PyTorch is given here. The

generator is mainly made up of convolution layers with

upsampling and batch normalization operations. The generator

for the GAN-CLS is no different than a typical generator in

the GAN, except the input where the embedding vector of the

text is added to the random vector. The self.projection

variable has the embedding vector, and variable z has a

random value in the following code:

class generator(nn.Module):

def __init__(self):

super(generator, self).__init__()

self.image_size = 64

self.num_channels = 3

self.noise_dim = 100

self.embed_dim = 1024

self.projected_embed_dim = 128

self.latent_dim = self.noise_dim + self.projected_embed_dim

self.ngf = 64

self.projection = nn.Sequential(

nn.Linear(in_features=self.embed_dim,

out_features=self.projected_embed_dim),

nn.BatchNorm1d(num_features=self.projected_embed_dim),

nn.LeakyReLU(negative_slope=0.2, inplace=True)

)

self.netG = nn.Sequential(

nn.ConvTranspose2d(self.latent_dim, self.ngf * 8, 4, 1, 0,

bias=False),

nn.BatchNorm2d(self.ngf * 8),

nn.ReLU(True),

state size. (ngf*8) x 4 x 4

nn.ConvTranspose2d(self.ngf * 8, self.ngf * 4, 4, 2, 1,

bias=False),

nn.BatchNorm2d(self.ngf * 4),

nn.ReLU(True),

state size. (ngf*4) x 8 x 8

nn.ConvTranspose2d(self.ngf * 4, self.ngf * 2, 4, 2, 1,

bias=False),

nn.BatchNorm2d(self.ngf * 2),

nn.ReLU(True),

state size. (ngf*2) x 16 x 16

nn.ConvTranspose2d(self.ngf * 2,self.ngf, 4, 2, 1, bias=False),

nn.BatchNorm2d(self.ngf),

nn.ReLU(True),

state size. (ngf) x 32 x 32

nn.ConvTranspose2d(self.ngf, self.num_channels, 4, 2, 1,

bias=False),

nn.Tanh()

state size. (num_channels) x 64 x 64

)

def forward(self, embed_vector, z):

projected_embed =

self.projection(embed_vector).unsqueeze(2).unsqueeze(3)

latent_vector = torch.cat([projected_embed, z], 1)

output = self.netG(latent_vector)

return output

Understanding Textual features are also appended to the final

output generated by convolutional layers of the discriminator,

and then a final convolutional transformation is applied to

predict it as fake or real. The network architecture of

discriminator in GAN-CLS using PyTorch is given here. The

convolution, batch normalization, and pooling operations are

present in the discriminator as well. Just like the generator,

the sentence embedding vector is given in the discriminator

so that it can verify that the image is real/fake with respect

to the description:

class discriminator(nn.Module):

def __init__(self):

super(discriminator, self).__init__()

self.image_size = 64

self.num_channels = 3

self.embed_dim = 1024

self.projected_embed_dim = 128

self.ndf = 64

self.B_dim = 128

self.C_dim = 16

self.netD_1 = nn.Sequential(

input is (nc) x 64 x 64

nn.Conv2d(self.num_channels, self.ndf, 4, 2, 1, bias=False),

nn.LeakyReLU(0.2, inplace=True),

state size. (ndf) x 32 x 32

nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1, bias=False),

nn.BatchNorm2d(self.ndf * 2),

nn.LeakyReLU(0.2, inplace=True),

state size. (ndf*2) x 16 x 16

nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1, bias=False),

nn.BatchNorm2d(self.ndf * 4),

nn.LeakyReLU(0.2, inplace=True),

state size. (ndf*4) x 8 x 8

nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1, bias=False),

nn.BatchNorm2d(self.ndf * 8),

nn.LeakyReLU(0.2, inplace=True),)

self.projector = Concat_embed(self.embed_dim,

self.projected_embed_dim)

self.netD_2 = nn.Sequential(

state size. (ndf*8) x 4 x 4

nn.Conv2d(self.ndf * 8 + self.projected_embed_dim, 1, 4, 1, 0,

bias=False),

nn.Sigmoid()

)

def forward(self, inp, embed):

x_intermediate = self.netD_1(inp)

x = self.projector(x_intermediate, embed)

x = self.netD_2(x)

return x.view(-1, 1).squeeze(1), x_intermediate

The generator It is calculated on the basis of the sample

generated by the generator and identified as fake by the

discriminator. The generator gets no loss if the sample it

generated is flagged as real by the discriminator; else, the

generator will be panelized:

class generator_loss(torch.nn.Module):

def __init__(self):

super(generator_loss, self).__init__()

self.estimator = nn.BCELoss()

def forward(self, fake):

batch_size = fake.size()[0]

self.labels = Variable(torch.FloatTensor(batch_size).cuda().fill_(1))

return self.estimator(fake, self.labels)

The discriminator The discriminator calculates three types of

losses:

Real image with Right text - A

Real image with Wrong text - B

Fake image (generated) with Right text - B

These three images are combined in a different proposition

and given back to the discriminator. Here, we are using

Binary Cross Entropy as the loss function. In the following

implementation, these losses are combined as d_loss = A +

0.5*B +C:

class discriminator_loss(torch.nn.Module):

def __init__(self):

super(discriminator_loss, self).__init__()

self.estimator = nn.BCELoss()

def forward(self, real, wrong, fake):

batch_size = real.size()[0]

self.real_labels =

Variable(torch.FloatTensor(batch_size).cuda().fill_(1))

self.fake_labels =

Variable(torch.FloatTensor(batch_size).cuda().fill_(0))

return self.estimator(real, self.real_labels) + 0.5 *

(self.estimator(wrong, self.fake_labels) + self.estimator(fake,

self.fake_labels))

The overall implementation of generative adversarial text-to-

image synthesis paper is provided at Understanding the given

description can make it easier for you to understand the

GitHub implementation.

The preceding implementation can be applied to the birds,

flowers dataset. Also, LeakyReLu activation is used with a

purpose in this implementation. Leaky ReLU stabilizes GAN;

you can replace this activation and try any other activation

function as a part of the experiment.

Take a look at the following links:

Generative adversarial text to image synthesis:

https://arxiv.org/pdf/1605.05396.pdf

Generate the corresponding image from text description using

modified GAN-CLS algorithm: https://arxiv.org/pdf/1806.11302.pdf

Conclusion

Generative networks are pioneering the next wave in AI and

deep learning. Although there is very little to talk about GAN

and text, it’s certainly evolving at a very fast pace. In this

chapter, we understood the basic theory of the GAN and

implemented a very small model with the MNIST dataset.

Also, we understood the instability associated with the GAN

due to its minimax optimization nature and possible

workarounds to converge such networks. Later, we saw how

to generate an image based on the description, which is also

an example of how convolutional and recurrent networks are

utilized in combination to accomplish a task.

In the next chapter, we will cover the techniques of speech

processing.

CHAPTER 10

Techniques of Speech Processing

In this chapter, we will explore an important and new area

where deep learning is used extensively—speech processing.

Speech is also related to Natural Language Processing, as it

has a temporal domain. In speech, everything is relative to

the text, and it depends on the context. As we face a

problem with processing text with different languages, these

problems reach the next level with speech processing. Speech

faces challenges with respect to the accent and language.

Despite these challenges, the market is flooded with personal

assistants like Siri, Alexa, Google Home, and Cortana. These

devices are getting better each day with newer techniques.

This chapter will introduce you to the units of sound,

techniques used to read sound, and feature extraction. This

chapter will use the Urban sounds dataset, wherein various

sounds we hear in the day to day life are classified. Then, we

will understand how DeepSpeech and DeepVoice are

developed and used for speech to text and text to speech

applications.

Structure

The following topics will be covered in this chapter:

Learning about Docker

Getting to know Phonemes

Training a small network

Understanding speech to text

Understanding text to speech

Objective

Learning the advanced techniques of speech processing

Understanding how audio signals are captured and stored

Spoken Digit Recognition were end to end model is discussed

in details

Getting to know advance frameworks like DeepSpeech and

DeepVoice

Technical Requirements

The code for this chapter can be found in the Ch10 folder at

GitHub repository To understand this chapter, you require

basic knowledge of the following Python packages:

Librosa

NumPy

Pandas

Matplotlib

Tqdm

Ipython

Scikit_learn

In this chapter, we will use Docker containers, and preliminary

information about Docker containers is given here. You can

install these requirements by installing all the packages listed

in requirements.txt by simply issuing pip install -r

Learning about Docker

Docker is a computer software that works by operating-

system-level virtualization. It runs a different container, and

each container is isolated from others existing in the system.

Each container can be a different operating system with

different packages, and each Docker container serves as an

isolated system with its network and security. The container is

created from images of a different kind. An image can be

created by anyone and can be used by anyone if it is open-

sourced. Images are often made by combining and modifying

standard images. An image may have custom hardware

support like GPU or may have custom functionality, including

the operating system packaged into one system. Nvidia

Docker is another variant of Docker that has Nvidia GPU

support. Going forward, we will use Nvidia Docker to have

GPU support and everything will be built into one package.

Use the following commands to install Nvidia Docker:

curl -s -L https://nvidia.github.io/nvidia-Docker/gpgkey | sudo

apt-key add - curl -s -L https://nvidia.github.io/nvidia-

Docker/ubuntu16.04/amd64/nvidia-Docker.list | sudo tee

/etc/apt/sources.list.d/nvidia-Docker.list

sudo apt-get update

sudo apt-get install -y nvidia-Docker

sudopkill -SIGHUP Dockerd # Restart Docker Engine

sudonvidia-Docker run --rmnvidia/cudanvidia-smi # finally run

nvidia-smi in the same container

Alternatively, you can install Nvidia-Docker by following the

guidelines at Fetching Nvidia-Docker container:

sudonvidia-Docker pull PyTorch/PyTorch

After a successful pull, you can see all the Docker images

present in your system as:

sudoDocker images

The Docker container can then be run with the following

commands:

Sudo nvidia-Docker run -it --rm -v subdirectory>:path> -p::

Mounts a local subsystem to a location inside the Docker

container. One can pass files to Docker containers, but it will

unnecessarily make the container bulkier.

Runs the Docker in an interactive mode.

Removes the Docker after you exit from it. It avoids dangling

Dockers and prevents them from using memory.

Binds a system port to Docker container port. It is

particularly useful for running Jupyter notebooks inside the

Docker.

After this step, you can directly run PyTorch with GPU

support.

Getting to Know Phonemes

Sound is an important part of our life—a means of

communication, a means of medical help, and plants can also

perceive it. All animals perceive sounds through their ears

and other auditory organs. Sound travels through the air by

making oscillations short of vibrations. This vibration can only

be perceived through the ears or can be captured into a

machine-readable format by a device called mic. Sound so

captured can be stored in a variety of file formats like WAV,

MIDI, or MP3. There are many such open sources, and

proprietary file format exists to store sound in machine-

readable form.

In the infant stage, our brain perceives sound and the

neurons in the brain are well-trained to decode information

through these signals. You may optionally go through this

research paper, wherein a scientist from the Massachusetts

Institute of Technology rewires the neurons and visual

projections routed to the auditory pathway. Still, the

experimental animal was able to see. This experiment tells

that our neuron is learning, and similarly, we can make

artificial neural networks to learn such information. In today’s

world, speech analytics is actively used in several areas:

Indexing and recommending music according to the genre

and similar content

Similarity search on the audio files - Shazam (An Apple

subsidiary) is a wonderful example for the same

Speed processing and generating artificial voice

For surveillance purposes

In the upcoming sections, we will see how to practically

implement and use text to speech and speech to text in

project pipelines. Before getting into the practical stuff, let’s

see how to extract features from speech signals to insert

them into the pipeline later. Audio has three-dimensional

representation: time, amplitude, and frequency:

Figure 10.1: Three - components of the sound wave.

The amplitude represents the power in the sound wave. High

amplitude sound will be loud, and low amplitude sound will

be quiet. Low-frequency sound might be a low rumble, while

a high-frequency sound might be more like a sizzle. We have

a lot of options to read and manipulate speech data. We will

use librosa for analyzing and extracting the audio features.

For playing audio in the Ipython notebook, we will use which

can be installed using pip install librosa. Alternatively, if you

can install librosa to anaconda using conda install -c conda-

forge You can install pyAudio as pip installPyAudio.

This section will cover the most basic aspects of speech

processing, including loading audio, playing audio, visualizing

signals, and feature extraction.

Loading an Audio File

The audio file can be loaded with the load function. After

loading a file, it is decoded into 1-dimensional time series.

The sampling rate is 22KHz by default:

importlibrosa

audio_path = ‘audio-path’

time_series, sampling_rate = librosa.load(audio_path)

print(type(time_series), type(sampling_rate))

The sampling rate can be changed as follows:

librosa.load(audio_path, sampling_rate = 44100)

Sampling can be disabled by specifying the parameter sr = In

this case, the entire signal will be decoded to output and will

take long to be processed using a machine learning pipeline:

librosa.load(audio_path, sampling_rate = none)

Playing an Audio File

Throughout this chapter, we will often conduct our

experiments using the Ipython notebook. So, we will use the

pyAudio package to play audio from the Ipython notebook

directly:

importIPython.display as ipd

ipd.Audio(audio_path)

It will open another window to play sound directly, and it has

a simple interface with a few buttons.

Visualizing the Signals

To display or visualize the audio signal, you can use the

function that supports visualization in the form of wave plot,

spectrogram, and colormap. The spectrogram is important to

plot, as it shows the amplitude and frequency of the audio at

a given time. Amplitude and frequency are important features

of the audio signal. The waveform is used to plot amplitude

versus time, wherein the is amplitude and the X-axis is time.

The following spectrogram and waveform are for an example

audio file:

plt.figure(figsize=(14, 5))

librosa.display.waveplot(time_series, sampling_rate)

A wavelet plot looks like as given below:

Figure 10.2: Wavelet

A spectrogram is the graphical representation of the spectrum

of the frequency of sounds. Here, you can easily see the

change in frequency with respect to time:

time_series_shift = librosa.stft(time_series)

Xdb = librosa.amplitude_to_db(abs(time_series_shift))

plt.figure(figsize=(14, 5))

librosa.display.specshow(Xdb, sr=sampling_rate, x_axis=’time’,

y_axis=’hz’)

plt.colorbar()

The spectrogram is as follows:

Figure 10.3: Spectrogram

Here, STFT is the short-term Fourier transform that converts

signals such that we can know the amplitude of a given

frequency at a given time.

Feature Extraction

Various feature extraction techniques are applied to audio data

before pushing it into a machine learning pipeline. Some of

these techniques are as listed:

MFCC — Mel-Frequency Cepstral Coefficients

Spectral Centroid

Spectral Rolloff

MFCC — Mel-Frequency Cepstral Coefficients

MFCC is the most important feature while working with audio

data. MFCC of the signal is a small set of feature that

concisely describes the overall shape of the spectrum. You

can calculate MFCC using librosa, as follows:

mfccs = librosa.feature.mfcc(time_series, sampling_rate)

print(“MFCC Shape :”,mfccs.shape)

#Displaying the MFCCs:

librosa.display.specshow(mfccs, sr=sampling_rate, x_axis=’time’)

The first dimension represents the number of MFCC, and the

second represents the number of such frames available:

Figure 10.4: MFCC

Spectral Centroid

It is about finding the center of the mass of the frequency

distribution in the given audio. If the audio ends with a

higher frequency, the spectrum will shift high toward the end.

If the audio is uniform throughout, the spectral centroid will

be toward the center. Spectral centroid can be calculated as

follows:

spectral_centroids = librosa.feature.spectral_centroid(time_series,

sampling_rate)[0]

spectral_centroids.shape

Computing the time variable for visualization

frames = range(len(spectral_centroids))

time_frame = librosa.frames_to_time(frames)

Normalising the spectral centroid for visualisation

def normalize(time_series, axis=0):

return sklearn.preprocessing.minmax_scale(time_series,

axis=axis)

#Plotting the Spectral Centroid along the waveform

librosa.display.waveplot(time_series, sr=sampling_rate,

alpha=0.4)

plt.plot(time_frame, normalize(spectral_centroids), color=’green’)

Frames_to_time converts frame to time.time[i] ==

Figure 10.5: Spectral centroid

Spectral Rolloff

Spectral rolloff where the frequency lower than the given

percentage of the average frequency lies. If we define cutoff =

85%, only the frequency lower than 85% is provided:

spectral_rolloff = librosa.feature.spectral_rolloff(time_series,

sampling_rate)[0]

frames = range(len(spectral_rolloff))

time_frame = librosa.frames_to_time(frames)

librosa.display.waveplot(time_series, sr=sampling_rate,

alpha=0.4)

plt.plot(time_frame, normalize(spectral_rolloff), color=’red’)

Figure 10.6: Spectral Rolloff

Librosa extracts many more features than the one discussed

here. These include chromastft, Constant Q cromagram,

Croma energy normalize - A chroma variant, RMS value for

each frame, Spectral Bandwidth, Spectral Contrast, Spectral

Flatness, Nth order polynomial to the column of the

spectrogram, Zero Crossing Rate, and Tempogram. You can

refer to the Librosa documentation to explore these features

in detail. I have provided the code at where you can

reproduce the implementation described earlier.

Refer to Librosa documentation: https://librosa.github.io/librosa/

Training a Small Network

We will be use the UrbanSound8K dataset to demonstrate

how speech recognition can be done and the components

usually required in such pipelines.

The UrbanSound8K dataset has 8732 labeled sound recordings

of 10 classes, namely, and These files are in the .wav format.

The UrbanSound8K dataset is available at Ensure that you

download this dataset while you run this recipe’s

implementation.

The speech recognition pipeline will have the following steps:

Feature extraction

Constructing CNN model

Training and estimating performance on the test set

Let’s learn each one by one.

Feature Extraction

Various features are extracted with the help of the Librosa

library. These features are discussed in detail in the previous

recipe.

Melspectrogram: Compute a mel-scaled spectrogram

MFCC (Mel-frequency cepstral coefficients)

Compute a chromagram from a waveform or power

spectrogram

Constant-Q chromagram

Computes the chroma variant “Chroma Energy Normalized”

(CENS)

All these features are then stacked, and the final feature

shape is [m, 40, 5, 1]. This shape is compatible with CNN

layers that we will use in our model.

Constructing the CNN Model

Model is a very simple convolutional network with various

layers like convolution 2D, batch normalization, maxpooling,

linear/dense layers along with the Relu activation function.

The model accepts shape 40, 5, 1] as produced by the data

loader, where is the batch size. Two convolutional

transformations with intermediate batch normalization and

ReLu activation are applied to it. Eventually, the final shape is

converged in to shape 10], where 10 is the number of class,

and m is the batch size. This model is too simple to

produce exceptionable accuracy, but it will provide an idea of

how voice recognition pipelines are designed:

class simple_network(nn.Module):

def __init__(self):

super(simple_network, self).__init__()

self.conv1 = nn.Conv2d(in_channels=40, out_channels=64,

kernel_size=3, padding=1,stride=1)

self.bn1 = nn.BatchNorm2d(64)

self.relu = nn.ReLU()

self.drop= nn.Dropout(0.2)

self.conv2 = nn.Conv2d(in_channels=64, out_channels=128,

kernel_size=3, padding=1, stride=1)

self.bn2 = nn.BatchNorm2d(128)

self.maxpool = nn.MaxPool2d(kernel_size=2, padding=1)

self.dense1 = nn.Linear(in_features=128*3, out_features=128*2)

self.dense2 = nn.Linear(in_features=128*2, out_features=10)

def forward(self, input_):

conv1_out = self.conv1(input_)

conv1_out = self.bn1(conv1_out)

relu_applied_1 = self.relu(conv1_out)

maxpol_out = self.maxpool(relu_applied_1)

conv_2_out = self.conv2(maxpol_out)

conv_2_out = self.bn2(conv_2_out)

relu_applied_2 = self.relu(conv_2_out)

drop_applied = self.drop(relu_applied_2)

dense1_out =

self.dense1(drop_applied.view(drop_applied.shape[0],drop_applied

.shape[1]*drop_applied.shape[2]))

relu_applied_3 = self.relu(dense1_out)

drop_applied = self.drop(relu_applied_3)

dense2_out = self.dense2(drop_applied)

relu_applied_4 = self.relu(dense2_out)

drop_applied = self.drop(relu_applied_4)

return torch.softmax(drop_applied, dim =1)

Training and Estimating Performance on the Test Set

Training is done using Adam optimizer and the binary cross-

entropy loss function. The convergence of the network on the

test dataset and its performance on test data as noted by

TensorBoard is plotted as follows:

Figure 10.7: Performance of the network on the UrbanSound8K

dataset.

The performance is not up to the mark, but the network is

learning, and changing architecture and parameters may

provide better accuracy.

Well, this was a very basic pipeline with a very basic feature

set and a basic CNN model. Here, the shape of the input

data was 40, 5, 1], to make it compatible with the CNN layer.

You can reshape it to 40, 5] to make it compatible with the

RNN layer. In the modified shape, there are 40-time steps,

and each one has five features. Construct a network with

RNN layers and see if you get significant improvement in the

test accuracies.

Speech commands: A public dataset for single-word speech

recognition dataset. This dataset has 10,000 train and 1,000

test recording. The output has ten classes 0-9, and 997

speakers produced this dataset. This dataset is freely available

at Try with this dataset with the same or different features

and models to reinforce your skills in the speech processing

tasks.

Understanding Speech to Text

Speech to text is an interesting area of research; it has a

unique end application. Some of the real-world applications

are listed here:

Save time with automatic transcription

No need to wait for the customer care executive to receive

your call; just leave your note

Write important emails and notes on the fly with voice

commands

Well-known state-of-the-art text to speech applications rely on

several handcrafted features and often don’t work end to end.

Some systems are very good in some areas, but porting them

to another area might require complete rework. In this recipe,

we will learn about an end-to-end automated speech to text

implementation. DeepSpeech was released by the Baidu

research lab in 2014. An updated version of DeepSpeech,

named DeepSpeech-2, was released in 2015. Both the

architecture allows end-to-end training of neural network

architecture capable of producing state-of-the-art results.

We will start by understanding the model behind DeepSpeech;

the DeepSpeech model has RNN components. In this training

set, signal will be treated as utterance x and labels The entire

training sample can be mathematically represented as X =

Spectrogram is used as the feature of the model, where T are

the total equally divided features present in the form of the

time slice It can be mathematically represented as t = 1, …,

In a spectrogram for any point, p represents the power of the

frequency in an audio frame at time The next schematic

diagram explains the feature for DeepSpeech. The end goal is

to predict any character given the time slice The probability of

predicting a character given the time slice is given by = This

probability is calculated by optimizing the neural network,

which has five hidden layers; all of them are RNN layers. The

first three layers are not recurrent, and for any layer the

output is denoted as At the very first layer, the input is

provided, which is also denoted as For the first three layers,

all the recurrent layers operate independently. For any time

slice in the spectrogram at time the output of the non-RNN

unit is calculated as follows:

=

Where,

= weight for the given layer

= bias for the given layer

= input from the previously hidden layer

g = Clipped ReLu activation can be given by

The fourth layer is the bidirectional recurrent layer, which

provides two outputs: a forward state and a backward state

= –

= –

The forward layer takes the utterances from t = 1 to t =

whereas the backward layer takes utterances from t = T to t

= 1.

Finally, Softmax is applied to the final output = + It shows

the probability of the presence of the given character at a

given utterance. After calculating the probability of the given

character, we calculate the CTC loss on top of this output to

measure the error in the prediction. The overall network

architecture is as follows:

Figure 10.8: Network architecture for DeepSpeech - 1

Source: https://arxiv.org/pdf/1412.5567.pdf

The network is trained with stochastic gradient descent and

keeping momentum = 0.99, decreasing the learning rate by a

constant factor. Dropout is used for regularizing the learning.

A year after this model was released, the Baidu research

optimized it further and proposed a newer model that was

released as DeepSpeech - 2. The newer model has several

layers. The initial convolution layers followed by one or more

convolution layers and then a few fully-connected layers. CTC

loss is used as a loss measure. The schematic diagram of

the network architecture is as follows:

Figure 10.9: Network architecture for DeepSpeech – 2.

This network is trained with batch normalization. The paper

of DeepSpeech - 2 describes how different arrangement

performs differently. Some of the different arrangements are

listed here:

Different RNN layers like GRU and LSTM are used

Variable layers of LSTM and CNN are used

Different stride with CNN

Unidirectional and bidirectional model

In the next session, we will see how to use DeepSpeech-2 to

translate speech to text.

We will use DeepSpeechPyTorch implementation of the

DeepSpeech -2.

Installation

The DeepSpeech can be installed and used just like other

packages, or we can directly download its Docker container

and start using it without installation. Docker image can be

constructed using a Docker file that is provided along with

the repository.

Cloning the repository

git clone https://github.com/SeanNaren/DeepSpeech.PyTorch.git

&&DeepSpeech.PyTorch

Using the container

sudonvidia-Docker build -t DeepSpeech2.Docker.

sudonvidia-Docker run -ti -v $pwd:/data:/workspace/data -p

8888:8888 --net=host --ipc=host DeepSpeech2.Docker # Opens

a Jupyter notebook, mounting the /data drive in the container

We won’t discuss the installation from the source, as using

Docker is the simplest option available here.

Datasets

DeepSpeech-2 currently supports the AN4, TEDLIUM, Voxforge,

and LibriSpeech datasets. The required dataset can be

downloaded as follows:

To download AN4 dataset

cd data; python an4.py

To download TEDLIUM dataset

cd data; python ted.py

To download Voxforge dataset

cd data; python voxforge.py

To download AN4 dataset

cd data; python LibriSpeech.py

Pretrained Model

A trained model can be downloaded and used as it is or can

be used to pre-trained model on which you may apply fine-

tuning by your custom dataset. The pre-trained model is

present here:

https://github.com/mozilla/DeepSpeech/releases/download/v0.6.1

/DeepSpeech-0.6.1-models.tar.gz

Training

Training can be started by simply passing the Train and

validation files:

python train.py --train-manifest data/train_manifest.csv --val-

manifest data/val_manifest.csv

Visualizing Training

Training can be visualized by pointing tensorboard to the log

directory:

python train.py --tensorboard --logdirlog_dir/

Dataset Augmentation

Similar to images, we can augment the speech dataset by

applying augmentation techniques and injecting noise. In

augmentation techniques, a small change in tempo and gain

increases the robustness of the training. Use the -augment

flag when training. One can also inject noise into the training

run by specifying noise files location. The noise files can be

provided to training by specifying --noise-dir Additionally, one

can specify --noise_prob to determine the probability of the

noise to be added. Also, --noise-max can be specified to

choose a minimum or maximum noise to be added. The

noise can be injected with the help of

python noise_inject.py --input-path /path/to/input.wav --noise-

path /path/to/noise.wav --output-path

/path/to/input_injected.wav --noise-level 0.5

Checkpoints and Continuing from Checkpoint

One can checkpoint the model at every N batch by specifying

--checkpoint-per-batch argument:

python train.py --checkpoint --checkpoint-per-batch N # N is

the number of batches to wait till saving a checkpoint at this

batch.

You can continue from this checkpoint by specifying the

python train.py --continue-from

models/DeepSpeech_checkpoint_epoch_N_iter_N.pth

Testing/Inference

The saved model can be used to evaluate the test data,

which must be in the same format as the train data:

python test.py --model-path models/DeepSpeech.pth --test-

manifest /path/to/test_manifest.csv --cuda

Transcription can be done by specifying the path to the audio

file:

python transcribe.py --model-path models/DeepSpeech.pth --

audio-path /path/to/audio.wav

Running a Server

The code is already provided with the script that exposes

everything as a server and can be used as an API. The call

to the server can be made as shown:

python server.py --host 0.0.0.0 --port 8000 # Run on one

window

curl -X POST http://0.0.0.0:8000/transcribe -H “Content-type:

multipart/form-data” -F “file=@/path/to/input.wav”

Instead of just running the model as a black box, it is

advisable to go into detail by understanding model.py. Warp-

CTC, a better implementation of the CTC loss is also

supported.

Take a look at the following links for reference:

DeepSpeech: Scaling up end-to-end speech recognition:

https://arxiv.org/pdf/1412.5567.pdf

DeepSpeech 2: End-to-end speech recognition in English and

Mandarin: https://arxiv.org/pdf/1512.02595.pdf

Understanding Text to Speech

Synthesizing artificial human speech from text using

computational techniques is generally known as Text To

Speech or TTS. TTS has many applications, and we’ve been

using some of them for years. Some real-life applications are:

Converts article to voice to listen to them on-the-go

For learning on-the-go during daily commute and exercising

Play.ht: Similar to Narro, helps enhance productivity while

commuting and exercising or gymming

A modern TTS system is complex and relies on hand-

engineered features. This makes the process of the TTS

system labor-intensive and complex. Baidu proposes a newer

model that uses end-to-end deep learning to train a model

named DeepVoice. The first publication of DeepVoice was in

2017, and three versions have been introduced since, claiming

state-of-the-art performance in the TTS domain. In this recipe,

we will understand DeepVoice 1 to get a basic idea of how

such systems work, and then we will learn how to use

DeepVoice-3 implementation on the real data.

The text to speech system is not as simple as speech to text.

To understand TTS, we must understand a few terms. A

grapheme is the smallest unit of a writing system for a given

language, and a single grapheme may not carry any meaning.

Graphemes can be alphabetic characters or combinations,

numerical digits, punctuation marks, Chinese characters, and

typographic ligatures. A graphene is often noted in the angle

bracket. The phoneme is the unit of the sound that

distinguishes one word from another in a language-specific

manner. TTS system has the following sub-models:

Graphene to phoneme model: Convert written text to

phonemes.

A segmentation model: Locate the phoneme boundaries in the

given voice dataset. Given an audio file with phoneme by

phoneme translation, the segmentation model identifies where

the audio begins and ends for a given phoneme.

Phoneme duration model: Predict the temporal duration of

each phoneme. It ensures that the translation is more

human-like.

The fundamental frequency model predicts whether the

phoneme is be converted to voice or note; this takes care of

silent phonemes.

The audio synthesis model combines the output of graphene

to phoneme, modulate phoneme duration and fundamental

frequency to synthesize audio at high sampling rate.

Now, we will look at each model in detail.

Grapheme to Phoneme Model

The grapheme to phoneme had encoder-decoder architecture.

The model has multilayered, bidirectional GRU. The

architecture is similar to the language translation model. This

model uses teacher forcing to generate phonemes.

Bidirectional layers with 1024 units are used.

The Segmentation Model

This model is trained to output alignment between the given

utterance and the sequence of target phonemes. This is very

similar to speech to text, where the alignment of the given

audio with target phonemes is the end goal. Here, CTC loss

has been used to train the model.

Phoneme Duration and Fundamental Frequency Model

Here, two models are combined into one. This model takes

the utterances generated by the previous m model and

produces the phoneme duration and the probability of the

phone being voiced. The model has two fully-connected layers

with 256 units, each followed by a unidirectional recurrent

layer with 128 GRU. The GRU output is given to a fully-

connected layer.

Audio Synthesis Model

This model is similar to the Wavenet model, which was first

proposed by DeepMind to synthesize a realistic human-like

voice. In addition to Wavenet, researchers use Quasi RNN

architecture for better speed than normal RNN. The details of

Wavenet are beyond the scope of the book, but you can refer

to the original paper. The following is a schematic diagram of

the overall network:

Figure 10.10: The DeepVoice-Model a) Training procedure b)

Inference Procedure.

Source: DeepVoice: Real-time Neural TTS.

This was a basic model, and Baidu published DeepVoice 2

and DeepVoice-3 models after this one. In the next section,

we will see how to use DeepVoice Model 3 to generate voice

from the text practically.

We will use DeepVoice PyTorch-based implementation of the

text to speech synthesis model.

Download Dataset

One can use all of the following datasets for the text to

speech model training:

LJSpeech https://keithito.com/LJ-Speech-Dataset/

VCTK

http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html

JSUT

https://sites.google.com/site/shinnosuketakamichi/publication/jsu

From here onward, we will see how to preprocess the

LJSpeech dataset, and we will discuss all the preprocessing as

well as training commands accordingly.

Installation

PyTorch DeepVoice 3 has the following dependencies and

must be installed before proceeding further:

Python 3

CUDA >= 8.0

PyTorch>= v0.4.0

nnmnkwii>= v0.0.11

Then, you need to clone the repo and install the package:

git clone https://github.com/r9y9/DeepVoice3_PyTorch && cd

DeepVoice3_PyTorch

pip install -e “.[bin]”

Test to speech is still under research, and each language

requires critical hyperparameter settings. For the same

purpose, different hyperparameter files are given at the

present/ folder of the repository. Each command for

preprocessing, train, and synthesis take the respective setting

as an option The same --preset= must be used throughout

the process.

Preprocessing

We will preprocess the LJSpeech dataset:

python preprocess.py --preset=presets/DeepVoice3_ljspeech.json

ljspeech ~/data/LJSpeech-1.0/./data/ljspeech

The preceding command will extract features like mel-

spectrograms and linear spectrograms in

Training

python train.py --preset=presets/DeepVoice3_ljspeech.json --data-

root=./data/ljspeech/

Model alignment and and files will be saved in ./checkpoints

directory at every 1000 steps.

Monitoring using TensorBoard

tensorboard --logdir=log

Using the model for synthesis

Any checkpoint can be used for the text to speech synthesis,

as shown:

python synthesis.py${checkpoint_path.pth} ${text_list.txt}

${output_dir} --preset=

If you have limited data, you can load the pre-trained model

and fine tune your dataset:

dataset:

dataset:

dataset:

dataset:

To use this pre-trained model, you must check out the

specific git commit, as follows:

git checkout ${commit_hash}

Then, you can directly synthesize from the checkpoint, as

shown here:

pretrained model

(20180505_DeepVoice3_checkpoint_step000640000.pth)

hparams (20180505_DeepVoice3_ljspeech.json)

git checkout 4357976

python synthesis.py --preset=20180505_DeepVoice3_ljspeech.json

20180505_DeepVoice3_checkpoint_step000640000.pth

sentences.txt output_dir

Here are the reference links for further details:

DeepVoice 3: Scaling text-to-speech with convolutional

sequence learning: https://arxiv.org/pdf/1710.07654.pdf

DeepVoice: Real-time neural text-to-speech:

https://arxiv.org/pdf/1702.07825.pdf

Wavenet: A generative model for raw audio:

https://arxiv.org/pdf/1609.03499.pdf

Conclusion

In this chapter, we saw how speech is also related to the

NLP, and it’s more like continuously flowing data. We

experimented with the preprocessing treatment required for

audio data, and then we covered two of the most-used

applications in the realm of speech processing: speech to text

and text to speech. In both, CNN and RNN models are used,

as we saw with the DeepVoice and DeepSpeech models. We

also saw that these networks use CTC loss, which we

previously understood in detail. This space is continuously

evolving, and if the domain excites you, you can explore

similar models like NvidiaTacotron and Waveglow.

In the next chapter, we will learn about the operational

efficiency of your application.

CHAPTER 11

The Road Ahead

The goal of this book is to provide you an entire landscape

of NLP and apply Deep learning for daily use cases. This

chapter covers the must-have skills for a deep learning

enthusiast. This chapter is mainly about scaling the

experiment to the production capable solution using various

optimization techniques. We have come a long way, covering

most of the basic concepts and their implementation.

Conceptual knowledge of these implementations will help you

in their real-life application. The previous chapters covered the

concepts and applications, but there is more to it.

Deployment is an essential end goal attached to real-life

applications. When it comes to the Deep Learning project,

around 90% of research is not scalable, or no thought

process is given to scalability, so it fails or ends up with un-

optimized resource utilization. Deep Learning algorithms are

computed hungry, and resources must be utilized properly

during training or inferencing.

This chapter mainly focuses on resource utilization and

deployment of the deep learning application. There is no

doubt that GPU is better when it comes to Deep Learning.

GPU technology developed as an alternative power source in

the past few decades. Many companies are offering GPU

compute, but there is no match for Nvidia GPU and its

software support for Deep Learning. GPU with proper

software optimization, if utilized properly, allows great speed

for a deployment/training pipeline. The next part of the

discussion is divided into two sections: training and

inferencing in the most efficient way.

Structure

Efficient training

Parallel data loading

Utilizing hardware resources

Efficient deployment

Hardware-related optimizations

Objective

Learning about the upcoming features as well as efficient

deployment and hardware-related optimization.

Efficient Training

Most Deep Learning related real-life applications require

multiple GPU. Efficient training can be ensured by focusing

on the following aspects of the training pipeline:

Parallel data loading

Utilizing hardware resources

Let’s understand each of these in detail.

Parallel Data Loading

Most of the deep learning architecture, be it MXNet, PyTorch,

or TensorFlow, has parallel data loaders. Parallel data loaders

help remove the bottleneck of data flow. Usually, CPU or GPU

waits for data to be loaded and for computation to happen,

which results in poor training performance. In the above

framework, data loaders are provided by default and help gain

a performance boost. Data loaders can use multiple cores at

a time for parallel data loading to multiple GPUs. The

following are the classes for data loader in various

frameworks:

torch.utils.data.Dataset and torch.utils.data.DataLoader

torch.utils.data

mx.gluon.data

These data loaders help load data and also help complete

intermediate operations like image augmentation, text cleaning,

tokenization, vectorization, feature generation, adding noise,

and filtering. Another advantage of such a data loader

pipeline is that the same data loader can be used while

inferencing and it helps minimize the variability in data

injection.

Utilizing Hardware Resources

For the last few years, it has become common to have

multiple GPUs attached to a single CPU. These multiple

GPUs can be utilized simultaneously for training, but you

need to change the training process a little for this.

Conceptually, parallel training can be done by exploring data

parallelism or model parallelism:

Data Here, one model is replicated in multiple GPU, and a

different instance of the data is provided to each model. After

forward pass, the collective loss from the multiple GPU is

calculated, and backpropagation is carried out in each model.

Data parallelism is very simple to implement and is the most

common type of parallelism used these days.

Model This involves keeping different layers of the model in

different GPUs, and operations are carried out in different

GPUs with the same set of data. It is complex and needs

lots of thought process and implementation. Majority of the

large models like Bert, GPT, and single-shot detectors are

trained this way.

As mentioned earlier, data parallelism can be implemented

easily, so most frameworks support it. Data parallelism can be

implemented as one of the following options:

In one machine with multiple GPUs.

In multiple machines with multiple GPUs attached.

Synchronous distributed All workers are synchronized at the

start of the new batch, and the server waits to receive

gradient from each worker after each batch. The drawback is

that the server has to wait for each worker to finish the job.

If one worker fails or takes a long time, it makes others wait.

Asynchronous distributed Here, the server maintains a key-

value pair of updates, and it updates the parameters and

starts with a new batch as soon as any worker finishes the

batch, without waiting for others to finish. This mode is

faster than synchronous distributed training.

The following are the various classes present in the several

frameworks for data parallelism:

torch.nn.DataParallel

MXNet multiple GPU context

tf.distribute. Strategy

Horovod is another great library for distributed training using

TensorFlow, Keras, PyTorch, and Apache MXNet. Horovod is

super easy to use, and it provides great speed up with

changes in a few lines.

Efficient Deployment

Deployment is the most important part, whereby the

interaction with customers or end-users occurs. The smoother

the interaction, the better the business. In deployment, the

efficiency of the product in terms of hardware cost matters

the most. A large model occupies more space in the disk

and main memory and often requires more compute

resources. Major research on the deployment side is being

carried out to shrink model size with an increase in the

performance in terms of the number of data points processed

per unit of time, without much degradation in its accuracy.

These optimizations work by utilizing the following methods,

individually or in combination:

Decreasing the floating point precision

Fusing layers

Getting rid of the backpropagation parameters

Most machine learning models do not require high precision

for training/prediction, and decreasing precision has very little

to no effect on the model performance. Most neural networks

work in FP32, but in 2017, Nvidia explored that neural

networks can be trained with lower precision, keeping the

same performance. Training neural network in half(FP16)

precision requires additional steps like loss scaling. According

to one of the white papers by Nvidia, the model trained with

FP32 and FP16 has the same performance with loss scaling.

Nvidia Tensor cores explore the previously discussed

opportunity to greatly enhance training and inference

performance.

Figure 11.1: Mixed precision training

Training curves for the bigLSTM English language model

shows the benefits of mixed-precision training techniques. The

Y-axis is training loss. Mixed precision without loss scaling

(grey) diverges after a while, whereas mixed precision with

loss scaling (green) matches the single-precision model

(black). Source: https://docs.nvidia.com/deeplearning/sdk/mixed-

precision-training/index.html

One of the open-source projects by Nvidia is named Apex,

which is being developed to allow support for mixed-precision

training on Nvidia GPU. Apex works on the following

mechanism:

A library that supports mixed-precision training

FP 16 Wraps the existing PyTorch optimizer in low precision

and automatically handles the weight updates and loss-scaling.

Plus, adding an apex to the existing model only requires two

lines of code change.

By mechanism, the Apex divides all the functions into three

parts:

White Function that can be ported into FP16 and will provide

a great speedup

Porting such a function will not provide much speedup

Everything All the leftover functions where FP32 - > FP16,

conversion cost is high, are left as it is.

In Apex, various other mechanisms like monkey patching are

used and a dictionary is maintained to minimize casting

operations on variables that have already been cast.

Another candidate that is gaining popularity for deployment is

TensorRT. Nvidia-TensorRT has multiple mechanisms to

optimize network performance while shrinking its overall size

and computational requirement. TensorRT works on the

following mechanisms:

Layers with unused output are eliminated to avoid

unnecessary computation.

Wherever possible, convolution, bias, and ReLU layers are

fused to form a single layer.

Horizontal layer fusion, or layer aggregation improves

performance by combining layers that take the same source

tensor and apply the same operations with similar parameters.

Backpropagation parameters for the gradient update are not

required when performing inference. Removing such

parameters also helps shrink the model size. TensorFlow

model freezing works on this mechanism.

These graph operations do not change the overall accuracy of

the model but help carry out operations faster and in a

power-efficient manner.

Hardware-related Optimizations

Now, it is obvious that GPU is the power source for the

deep learning related models. GPU is a physical device

attached to the motherboard via PCIe lane. A system with

multiple GPUs attached to one motherboard is common these

days. PCIe has a maximum theoretical bandwidth of 30GB/s,

and it proves to be a real bottleneck in a multi-GPU system.

When multiple GPUs are connected in the network, such

systems are often interconnected by CAT-6 Ethernet or optic-

fiber networks. Such connections are not efficient and prove

to be a bottleneck. For this purpose, specialized machines are

available to accelerate deep learning training. This device

relies on the InfiniBand connection between GPU-GPU and

GPU-CPU. InfiniBand is much faster for data transfer as

compared to the traditional data transfer system. NVLink uses

InfiniBand along with software-level enhancements to greatly

bypass the bottleneck.

IBM Power8 CPU, where CPU can be directly connected to

the GPU using NVLink.

Multiple Nvidia-GPUs can be connected using multiple

NVlinks provides 10X+ performance than the PCI bandwidth.

The following software-level improvements enhance the

performance of such specialized systems:

Remote Direct Memory Access Provides granular access across

GPU.

Multi-process service Allows multiprocessing on the GPU

based on the time required and is criticality associated with

the process. It ensures that one process does not occupy all

the resources while other processes die out.

Address translation GPU can directly access the CPU’s

memory page table. It aids synchronous data pulling from the

main memory.

Take a look at the following links:

Data parallelism:

https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html

Demystifying parallel and distributed deep learning: An in-

depth concurrency analysis: https://arxiv.org/pdf/1802.09941.pdf

Run MXNet on Multiple CPU/GPUs with data parallelism:

https://mxnet.incubator.apache.org/versions/master/faq/multi_devices

.html

Conclusion

This chapter brought operational efficiency in your application.

We briefly visited techniques like mixed-precision training,

which significantly improves the pace of the training. We also

saw how an accelerator framework like TensorRT can be used

for accelerated inference. This chapter briefly introduced you

to enterprise-grade solutions to scale out your solution to

millions of customers.

Index

A

abstractive text summarization 253

address translation service 373

advance RNN Units 122

affix stemmers

about 48

reference link 48

Ag News corpus

reference link 175

Annotated Transformer

reference link 262

Apex mechanism

functions 371

working 371

asynchronous distributed training 369

attention mechanism

about 155

decoder

Auto Keras tool 282

auto-ml tool

advantages 282

Auto-sklearn tool 282

Auto-WEKA tool 282

B

batches

translating, with Seq2Seq 146

BatchNorm

benefits 182

Batch-wise Matrix Multiplication (BMM) 263

beam search

bias

about 12

cause 13

problem, tackling 14

bias-variance problem

about 15

managing 18

measures 18

Bidirectional Encoder Representations from Transformers

(BERT)

about 230

using

Bilingual Evaluation Understudy Score (BLEU) score 158

binary labels 6

bit pair encoding

Bootstrap Aggregating 288

C

character-based embedding

about 106

advantages 105

generation

character level CNN

using

character representation

Comma Separated Values (CSV) 64

components, TorchText

TorchText.data 63

TorchText.datasets 63

TorchText.vocab 63

confusion matrix 10

connectionist temporal classification (CTC)

about 306

working 307

contextual vectors

about 220

pre-trained model, using

contextual vectors, components

Bidirectional Language Model (biLM) 219

token representation 219

Continuous Bag of Words (CBOW) 87

convblock function

layers 183

Convolutional Neural Network (CNN) 163

convolution block 183

convolution layer

about 172

for inputs 166

for inputs 167

convolution operations 163

co-occurrence matrix

about 81

constructing

disadvantages 84

count-based approaches 80

CTC loss

about 306

calculating 308

example 307

usage 310

CTC-warp

installing 309

D

data

downloading 312

loading 298

parsing, from JSON format 44

parsing, from XML format 45

passing, from JSON format 45

pre-processing 298

data learning

about

binary labels 6

fake image data 6

machine learning model 7

model, coding with PyTorch 8

model convergence, confirming 9

perceptron model, implementing 5

data parallelism

about 369

asynchronous distributed training 369

frameworks 370

reference link 373

synchronous distributed training 369

data processing 42

data retrieval 42

dataset

downloading 119

LJSpeech dataset, preprocessing 364

monitoring, with TensorBoard 364

predicting 303

predicting, with CNN 304

predicting, with RCNN 306

preparing 303

pre-processing 169

pre-trained model, using 365

PyTorch DeepVoice installing 363

training 364

dataset description 297

decoder

about 148

with batching 142

decoder batch processing

implementing 147

decoder module

decoder phase 142

decoding 309

Deep Convolution Generative Adversarial Network (DC-GAN)

336

deep convolution network

using 182

deeper network

training 189

DeepSpeech

reference link 360

DeepSpeech 2

reference link 360

DeepVoice

reference link 365

DeepVoice 3

reference link 365

DenseNet 194

derived measures 10

Docker

learning 345

Docker container

commands 345

document classification

multi-document summarization 250

single document summarization 250

Document Object Model (DOM) 42

documents 79

E

efficient deployment

efficient training

about 368

hardware resources, utilizing 369

parallel data loading 368

ElasticNet

about 23

implementing 28

embedding 170

embedding concept

implementing

encoder

about 147

with batching 142

encoder batch processing

implementing 147

encoder module 313

End of Sequence (EOS) 149

ensembling techniques

ensembling techniques, types

bagging 288

boosting 289

stacking 289

error/noise reduction

about 10

BLEU score 12

confusion matrix 10

derived measures 10

weighted loss function, defining 12

evaluation module 139

extrinsic evaluation 104

F

Facebook AI Research (FAIR) 106

fake image data 6

FastText embeddings

training

feature extraction techniques

Mel-Frequency Cepstral Coefficients (MFCC) 349

spectral centroid 350

spectral rolloff 352

Feed-forward Network (FFN) 163

flexible model

with dense layers 285

with RNN layers 286

flexible networks

creating 284

fully connected layers 166

G

GAN architecture

about 325

loss function 326

GAN architecture, variations

CycleGAN 329

music generation 330

PixelDTGAN 329

super-resolution 329

text to image 329

GAN challenges

diminished gradient 331

feature matching 332

historical averaging 334

hyper-parameter selection 331

minibatch discrimination 334

mode collapse 330

nash equilibrium 332

non-convergence 330

one-sided label smoothing 334

GAN-CLS

discriminator 338

discriminator loss 340

generation loss 340

generator 337

GAN components

about 323

discriminator function 324

generator function 324

Gated Recurrent Unit (GRU)

about 127

current memory content 129

final memory 129

implementing 127

reset gate 128

update gate 128

with PyTorch 130

Generative Adversarial Nets (GAN)

implementing, for MNIST

reference link 326

theory 335

Global Vectors (GloVe)

about 99

components

co-occurrence matrix, constructing 101

data preprocessing 101

learnable parameters, defining 99

loss function, defining 100

parameters, defining 101

reference link 105

Gradient Boosted Machine (GBM) 29

Grey-level co-occurrence matrix (GLCM) 84

GRU function

arguments 129

H

hardware-based inferencing 32

hardware-related optimizations 372

hardware resources

utilizing 369

high network

fundamental block 193

highway network 191

hybrid approach 48

I

image

generating, from description 341

image augmentation

about 313

implementing 313

image captioning

inference

about 30

hardware-based inferencing 32

software-based inferencing 30

InferSent

InfiniBand (IB) 372

intrinsic evaluation 104

L

language problem

language translation

building, with transformer

encoder 154

implementing 153

Lasso regression

implementing

Lasso regularization 23

Latent Dirichlet Allocation (LDA)

about 243

applying 242

data preparation 242

model, evaluating 244

output, visualizing 244

reference link 244

learning curve

about 19

data pre-process, loading 19

random forest regression, using 22

simple regression model, using 20

Learning Phrase Representations 127

learning principles

about 32

data related concepts

model related concepts 33

learning rate modifier 291

lemma 49

lemmatization 50

librosa documentation

reference link 352

LJSpeech dataset 363

Long Short-Term Memory (LSTM)

about 117

forget gate 124

gating mechanism

input gate 124

output gate 124

loss function

for sequence to sequence architecture

LSTM Units

modifying 127

M

machine learning model 7

masked language model 231

masking

functions 208

Mean Squared Error Loss (MSELoss) 61

Mean Squared Error (MSE) 5

Mel-Frequency Cepstral Coefficients (MFCC) 349

methods, Word2Vec

Continuous Bag of Words (CBOW) 89

Minimum Description Length (MDL) 32

model

coding, with PyTorch 8

model convergence

confirming 9

model parallelism 369

Multi-process service (MPS) 373

N

named entity recognition (NER)

building 267

character level features

word level features 271

Named Entity Resolution (NER) 52

Natural Language Inference (NLI) 301

Natural Language Processing (NLP)

about 222

problems 41

negative log likelihood (NLL) 93

network 188

network architecture

Neural Machine Translation 152

next sentence prediction model 232

NLTK tokenizer

multi-word expression tokenizer (MWETokenizer) 54

reference link 54

Regular Expressions tokenizer 54

Twitter-aware tokenizer 53

using 52

no pre-trained embedding

training

numbers

computing 79

O

Occam’s Razor theory 32

optical character recognition (OCR) 306

P

padding 165

paragraphs 79

Paragraph Vector 213

Paragraph Vector - Distributed Memory model (PV-DM) 215

parallel data loading 368

path decoding algorithm 309

perceptron model

implementing 5

phonemes

about

audio file, loading 347

audio file, playing 347

audio signals, visualizing 349

feature extraction techniques 349

small network, training 352

polysemy 79

pooling layers 167

positional encoding 206

Principle Component Analysis (PCA) 87

PyTorch

about 55

components 56

features 55

installing

used, for coding model 8

R

random multi-model architecture 283

random multi-model deep learning (RMDL)

about 282

applying, on Reuter data 288

network architecture 282

reference link 288

using 286

RECIPE tool 282

Recognizing Textual Entailment (RTE) 301

Rectifier Linear Unit (Relu) 168

Recurrent-CNN architecture 303

Recurrent Convolutional Network (RCN) 301

Recurrent Convolutional Neural Network (RCNN)

about 301

application 302

Recurrent Neural Network (RNN) 117

Recurrent Units 114

Recursive Neural Network (RNN) 263

Regional Convolutional Neural Network (RCNN) 301

regularization

about 22

ElasticNet, implementing 28

Lasso regression, implementing

Lasso regularization 23

Ridge regularization 23

Remote Direct Memory Access (RDMA) 373

residual connection 207

ResNet

about 190

fundamental block 192

Reuter data

RMDL, applying on 288

Ridge regularization 23

rolling

S

Scikit learn functions

to build pipeline 17

sentence

converting, to vector

SentencePiece algorithm

about 281

features 277

sentiment analysis 263

attention mechanism 266

Seq2Seq

batching

used, for translating batches 146

Sequence encoder/decoder

implementing 135

sequence to sequence architecture

loss function 145

sequence to sequence model

short-term fourier transform 349

Short-Term Memory 116

Siamese network

about

layers type 296

Singular Vector Decomposition (SVD) 87

sister network

building 299

SkipThought 218

small network

training 352

snapshot

parameters 293

predicting

recording 292

snowball algorithm

about

reference link 48

software-based inferencing 30

software-level improvements

performance 373

Spacy tokenizer

reference link 54

using 52

spectral centroid 350

spectral rolloff 352

speech recognition pipeline

CNN model, constructing 353

feature extraction 352

performance, estimating on test set 355

performance, testing on test set 355

performance, training on test set 354

Speech to Text

about

checkpoint 359

dataset augmentation 359

datasets 358

DeepSpeech, installing 358

inference 360

pretrained model 358

server, running 360

testing 360

training 359

training, visualization 359

Stanford Natural Language Inference (SNLI) 301

stemming 45

stemming algorithm

production techniques 45

suffix stripping techniques 46

stem network 301

stochastic algorithm 48

stochastic gradient descent (SGD) 93

stride 165

subword-nmt 277

supervised embedding

training

synchronous distributed training 369

T

Tab Separated Values (TSV) 64

TensorBoard

embedding values, projecting on TensorboardX 74

image, projecting to TensorboardX 72

scalar values, displaying on TensorboardX 70

text, displaying on TensorboardX 72

visualizing 69

TensorboardX

reference link 74

TensorRT 31

TensorRT mechanisms

working 372

Term Frequency-Inverse Document Frequency (TF-IDF)

about 85

inverse document frequency 85

matrix, constructing 87

term frequency (TF) 85

text generation

network architecture

text summarization engine

abstractive summarization 250

building 251

extractive summarization 250

Text To Speech (TTS)

about 361

dataset, downloading 363

Text To Speech (TTS), sub-models

audio synthesis model 362

fundamental frequency model 362

graphene model 361

phoneme duration model 362

phoneme model 361

segmentation model 362

token 79

tokenization

about 50

high-level tokenization 51

low-level tokenization 51

NLTK tokenizer, using 51

Spacy tokenizer, using 52

topic modeling

about

LDA, applying 242

reference link 244

TorchText

components 63

data, loading 64

preprocessing 66

reference link 62

using 62

vectorization 68

TPOT tool 282

training

about 137

components 137

transformer

about

positional encoding

source and target masking

used, for building language translation

using

U

unigram language model 277

unrolling

unsupervised pretraining 323

V

Vapnik-Chervonenkis (VC) dimension 33

variance

techniques 15

variants 319

Vector Space Models (VSM) 87

version techniques, Word2Vec

negative sampling 98

sub-sampling 97

word pairs and phrases 97

W

Wavenet

reference link 365

web developers

techniques 45

web page

scrapping 44

weighted loss function

defining 12

use cases 11

Word2Vec

about 88

code implementation

Continuous Bag of Words (CBOW) 90

methods 89

SkipGram 91

version 96

word level CNN

using 169

WordPiece 277

word/token

converting

	Start

